1.OpenTelemetryãSpring Cloud SleuthãKafkaãJagerå®ç°åå¸å¼è·è¸ª
2.Spring Cloud Sleuth 原理简介和使用
3.springcloud2022ï¼
4.还在用Zipkin分布式服务链路追踪?源码来试试这个吧!
5.微服务实践之全链路追踪(sleuth,zipkin)详解-SpringCloud(2021.0.x)-4
OpenTelemetryãSpring Cloud SleuthãKafkaãJagerå®ç°åå¸å¼è·è¸ª
åå¸å¼è·è¸ªå¯è®©æ¨æ·±å ¥äºè§£ç¹å®æå¡å¨åå¸å¼è½¯ä»¶ç³»ç»ä¸ä½ä¸ºæ´ä½çä¸é¨åæ¯å¦ä½æ§è¡çãå®è·è¸ªåè®°å½ä»èµ·ç¹å°ç®çå°ç请æ±ä»¥åå®ä»¬ç»è¿çç³»ç»ãå¨æ¬æä¸ï¼æ们å°ä½¿ç¨ OpenTelemetryãSpring Cloud SleuthãKafka å Jaeger å¨ä¸ä¸ª Spring Boot å¾®æå¡ ä¸å®ç°åå¸å¼è·è¸ªã
æ们å æ¥ççåå¸å¼è¿½è¸ªä¸çä¸äºåºæ¬æ¯è¯ã
跨度ï¼è¡¨ç¤ºç³»ç»å çå个工ä½åå ã跨度å¯ä»¥ç¸äºåµå¥ä»¥æ¨¡æå·¥ä½çå解ãä¾å¦ï¼ä¸ä¸ªè·¨åº¦å¯è½æ£å¨è°ç¨ä¸ä¸ª REST 端ç¹ï¼ç¶åå¦ä¸ä¸ªå跨度å¯è½æ¯è¯¥ç«¯ç¹è°ç¨å¦ä¸ä¸ªï¼ççå¨ä¸åçæå¡ä¸ã
Traceï¼ææå ±äº«ç¸åæ ¹è·¨åº¦ç跨度éåï¼æè æ´ç®åå°è¯´ï¼å°ææ跨度å建为åå§è¯·æ±çç´æ¥ç»æã跨度çå±æ¬¡ç»æï¼æ¯ä¸ªè·¨åº¦å¨æ ¹è·¨åº¦æè¾¹é½æèªå·±çç¶è·¨åº¦ï¼å¯ç¨äºå½¢ææåæ ç¯å¾ï¼æ¾ç¤ºè¯·æ±å¨éè¿åç§ç»ä»¶æ¶çè·¯å¾ã
OpenTelemetry ï¼ä¹ç®ç§°ä¸º OTelï¼æ¯ä¸ä¸ªä¾åºåä¸ç«çå¼æº Observability æ¡æ¶ï¼ç¨äºæ£æµãçæãæ¶éå导åºé¥æµæ°æ®ï¼ä¾å¦ è·è¸ª ã ææ å æ¥å¿ ãä½ä¸º äºåç 计ç®åºéä¼ (CNCF) çåµå项ç®ï¼OTel æ¨å¨æä¾ä¸ä¾åºåæ å ³çç»ä¸åºå API éââ主è¦ç¨äºæ¶éæ°æ®å¹¶å°å ¶ä¼ è¾å°æå¤ãOTel æ£å¨æ为çæå管çé¥æµæ°æ®çä¸çæ åï¼å¹¶è¢«å¹¿æ³éç¨ã
Sleuth æ¯ä¸ä¸ªç± Spring Cloud å¢é管çåç»´æ¤ç项ç®ï¼æ¨å¨å°åå¸å¼è·è¸ªåè½éæå° Spring Boot åºç¨ç¨åºä¸ãå®ä½ä¸ºä¸ä¸ªå ¸åSpring Starterç . 以ä¸æ¯ä¸äºå¼ç®±å³ç¨ç Sleuth å·¥å ·ï¼
Sleuth æ·»å äºä¸ä¸ªæ¦æªå¨ï¼ä»¥ç¡®ä¿å¨è¯·æ±ä¸ä¼ éææè·è¸ªä¿¡æ¯ãæ¯æ¬¡è°ç¨æ¶ï¼é½ä¼å建ä¸ä¸ªæ°ç Spanãå®å¨æ¶å°ååºåå ³éã
Sleuth è½å¤è·è¸ªæ¨ç请æ±åæ¶æ¯ï¼ä»¥ä¾¿æ¨å¯ä»¥å°è¯¥éä¿¡ä¸ç¸åºçæ¥å¿æ¡ç®ç¸å ³èãæ¨è¿å¯ä»¥å°è·è¸ªä¿¡æ¯å¯¼åºå°å¤é¨ç³»ç»ä»¥å¯è§å延è¿ã
Jaeger æåç± Uber çå¢éæ建ï¼ç¶åäº å¹´å¼æºãå®äº 年被æ¥å为äºåçåµå项ç®ï¼å¹¶äº å¹´æ¯ä¸ãä½ä¸º CNCF çä¸é¨åï¼Jaeger æ¯äºåç æ¶æ ä¸å ¬è®¤ç项ç®ãå®çæºä»£ç 主è¦æ¯ç¨ Go ç¼åçãJaeger çæ¶æå æ¬ï¼
ä¸ Jaeger 类似ï¼Zipkin å¨å ¶æ¶æä¸ä¹æä¾äºç¸åçç»ä»¶éã尽管 Zipkin æ¯ä¸ä¸ªè¾èç项ç®ï¼ä½ Jaeger å ·ææ´ç°ä»£åå¯æ©å±ç设计ã对äºæ¤ç¤ºä¾ï¼æ们éæ© Jaeger ä½ä¸ºå端ã
让æ们设计ä¸ä¸ª Spring Boot å¾®æå¡ï¼
è¿ä¸ä¸ªå¾®æå¡æ¨å¨ï¼
è¿æ¯ä¸ºäºè§å¯ OpenTelemetry å¦ä½ç»å Spring Cloud Sleuth å¤ç代ç çèªå¨æ£æµä»¥åçæåä¼ è¾è·è¸ªæ°æ®ãä¸é¢çè线æè·äºå¾®æå¡å¯¼åºçè·è¸ªæ°æ®çè·¯å¾ï¼éè¿OTLPï¼OpenTelemetry Protocolï¼ä¼ è¾å°OpenTelemetry Collectorï¼æ¶éå¨ä¾æ¬¡å¤ç并å°è·è¸ªæ°æ®å¯¼åºå°å端Jaegerè¿è¡åå¨åæ¥è¯¢ã
ä½¿ç¨ monorepoï¼æ们ç项ç®ç»æå¦ä¸ï¼
第 1 æ¥ï¼æ·»å POM ä¾èµé¡¹
è¿æ¯ä½¿ç¨ OTel å Spring Cloud Sleuth å®ç°åå¸å¼è·è¸ªçå ³é®ãæ们çç®æ æ¯ä¸å¿ æå¨æ£æµæ们ç代ç ï¼å æ¤æ们ä¾é è¿äºä¾èµé¡¹æ¥å®æå®ä»¬è®¾è®¡çå·¥ä½ââèªå¨æ£æµæ们ç代ç ï¼é¤äºè·è¸ªå®ç°ãå°é¥æµæ°æ®å¯¼åºå° OTel æ¶éå¨çã
第 2 æ¥ï¼OpenTelemetry é ç½®
OpenTelemetry æ¶éå¨ç«¯ç¹
对äºæ¯ä¸ªå¾®æå¡ï¼æ们éè¦å¨å ¶ä¸æ·»å 以ä¸é ç½®application.ymlï¼è¯·åé ä¸é¢é¨åä¸ç示ä¾ç段ï¼ãspring.sleuth.otel.exporter.otlp.endpoint主è¦æ¯é ç½®OTel Collector端ç¹ãå®åè¯å¯¼åºå¨ï¼å¨æ们çä¾åä¸æ¯ Sleuthï¼éè¿ OTLP å°è·è¸ªæ°æ®åéå°æå®çæ¶éå¨ç«¯ç¹.hutool.core.collection.CollectionUtil;
importcom.netflix.hystrix.HystrixCommandGroupKey;
importcom.netflix.hystrix.HystrixCommandKey;
importcom.netflix.hystrix.HystrixCommandProperties;
importcom.netflix.hystrix.HystrixObservableCommand;
importcom.netflix.hystrix.exception.HystrixRuntimeException;
importorg.springframework.beans.factory.ObjectProvider;
importorg.springframework.cloud.gateway.filter.GatewayFilter;
importorg.springframework.cloud.gateway.filter.GatewayFilterChain;
importorg.springframework.cloud.gateway.filter.factory.AbstractGatewayFilterFactory;
importorg.springframework.cloud.gateway.support.ServerWebExchangeUtils;
importorg.springframework.cloud.gateway.support.TimeoutException;
importorg.springframework.core.annotation.AnnotatedElementUtils;
importorg.springframework.mand;
if(CollectionUtil.isNotEmpty(apiTimeoutList)){
//requestå¹é å±äºé£ç§æ¨¡å¼
ApiHystrixTimeoutapiHystrixTimeout=getApiHystrixTimeout(apiTimeoutList,源码path);command=newUnicornRouteHystrixCommand(config.getFallbackUri(),exchange,chain,initSetter(apiHystrixTimeout.getApiPattern(),apiHystrixTimeout.getTimeout()));}else{
command=newUnicornRouteHystrixCommand(config.getFallbackUri(),exchange,chain,initSetter(serviceId(exchange),null));
}
returncommand;
}/
***@paramapiTimeoutList*@parampath*@return*/privateApiHystrixTimeoutgetApiHystrixTimeout(ListapiTimeoutList,Stringpath){for(ApiHystrixTimeoutapiTimeoutPattern:apiTimeoutList){
if(this.antPathMatcher.match(apiTimeoutPattern.getApiPattern(),path)){
returnapiTimeoutPattern;
}}
ApiHystrixTimeoutapiHystrixTimeout=newApiHystrixTimeout();
apiHystrixTimeout.setApiPattern("default");
apiHystrixTimeout.timeout=null;
returnapiHystrixTimeout;
}@Override
publicGatewayFilterapply(Configconfig){return(exchange,chain)-{
UnicornRouteHystrixCommandcommand=initUnicornRouteHystrixCommand(exchange,chain,config);
returnMono.create(s-{Subscriptionsub=command.toObservable().subscribe(s::success,s::error,s::success);
s.onCancel(sub::unsubscribe);
}).onErrorResume((Function)throwable-{if(throwableinstanceofHystrixRuntimeException){
HystrixRuntimeExceptione=(HystrixRuntimeException)throwable;
HystrixRuntimeException.FailureTypefailureType=e.getFailureType();switch(failureType){caseTIMEOUT:
returnMono.error(newTimeoutException());
caseCOMMAND_EXCEPTION:{
Throwablecause=e.getCause();
if(causeinstanceofResponseStatusException||AnnotatedElementUtils.findMergedAnnotation(cause.getClass(),ResponseStatus.class)!=null){
returnMono.error(cause);
}}
default:
break;
}}
还在用Zipkin分布式服务链路追踪?来试试这个吧!
微服务架构的兴起,为全球企业带来了转型的源码机遇与挑战。微服务的源码双刃剑效应,在带来诸多优势的源码同时,亦对运维、源码unity教育源码性能监控及错误排查提出了严峻考验。源码面对大型项目中服务节点的源码繁多与请求链路的复杂,分布式系统的源码APM管理系统应运而生,旨在帮助理解系统行为,源码分析性能问题,源码快速定位和解决问题。源码
APM系统,源码全称Application Performance Monitor,源码是源码免费淘宝源码用于监控和管理应用程序性能的工具。谷歌的Dapper论文,作为最早的APM系统原型,为开发者和运维团队提供了强大支持。基于Dapper原理,Pinpoint、SkyWalking等出色APM框架相继问世。SpringCloud官网也集成了一套基于Zipkin的系统:Spring Cloud Sleuth。
APM系统的基本原理主要围绕Google Dapper设计的几个核心概念:Span(请求的基本工作单元)与Trace(一次完整的调用链路,包含多个Span的树状结构,具有唯一的TraceID)。通过spanId、parentId,请求的每个链路得以串联。每次请求从发起至服务器开始,outlook 编辑源码至返回response结束,每个span共享相同的唯一标识trace_id。
在选择APM框架时,主要需考虑以下几方面:探针的性能、收集器的可扩展性、全面的调用链路数据分析能力、对开发的透明性以及对应用拓扑的完整展现。Zipkin、Pinpoint与SkyWalking等框架各有优劣,SkyWalking凭借其在探针性能、开发透明性与数据分析能力上的优势,以及部署的便利性,成为了中小型企业的理想选择。
SkyWalking是extjs相关源码一款提供分布式追踪功能的系统,自年起发展成为完整的APM解决方案。它适用于追踪、监控和诊断分布式系统,特别是在使用微服务架构、云原生或容积技术的场景。SkyWalking提供了分布式追踪与上下文传输、应用实例与服务性能指标分析、根源分析、应用拓扑分析、应用和服务依赖分析、慢服务检测、性能优化等主要功能。
其特色包括多语言探针或类库支持、Java自动探针,随便游戏源码无需修改源码即可追踪和监控程序、社区提供的其他多语言探针、.NET Core与Node.js支持、多种后端存储选择、与OpenTracing API协同工作、轻量级、完善功能的后端聚合与分析、现代化Web UI、日志集成以及应用、实例和服务的告警。
为了使用SkyWalking,需要先确保Linux环境中的Elasticsearch服务已启动,并开放相应端口。安装过程分为三步:下载安装包、安装Skywalking的OAP服务和WebUI、部署微服务探针。在完成安装后,通过访问WebUI(默认端口为)可查看服务实例的性能监控、服务拓扑图、请求链路追踪信息与表格视图。
本文内容由黑马程序员Java培训学院编写并发布,欢迎转载,但需注明作者及出处,以尊重版权。
微服务实践之全链路追踪(sleuth,zipkin)详解-SpringCloud(.0.x)-4
本文介绍微服务架构中链路追踪组件Sleuth与Zipkin在SpringCloud入门的使用。
链路追踪为何重要?在微服务中,服务间频繁调用,若调用链路出现问题,追踪请求路径、服务耗时变得困难。特别是服务数量增加到个时,链路追踪显得至关重要。
链路追踪基于Dapper论文原理,Dapper论文提供了分布式追踪的核心概念,如Trace(跟踪)、Span(跨度)、Annotations(注解)、Sampling(采样率)等。追踪链路包括一个全局唯一标识的traceId和每个跨度的唯一spanId,记录服务名称、IP、调用时间等信息,采样率用于在高并发下高效采集。
在SpringCloud中,通过Sleuth和Zipkin实现全链路追踪。Sleuth负责信息采集,Zipkin负责处理与展示。
部署Zipkin服务需安装并配置Docker和MySQL数据库。Docker-compose文件用于启动服务,执行SQL脚本创建表。
在POM文件中引入Sleuth和Zipkin依赖。配置Zipkin服务地址及采样率(测试中设置为%)。每个服务配置才能实现全链路追踪。
引入Sleuth starter自动在调用中添加追踪信息。例如,OpenFeign接口调用会输出日志,显示traceId和spanId,传递至Zipkin。
登录Zipkin后台查看链路详情。使用浏览器访问http://localhost:,可按条件查询链路,展示调用链、每个跨度耗时,定位性能瓶颈,优化服务。
Zipkin展示动态链路图,直观显示服务间调用关系。利用traceId查询特定链路,获取详细信息。追踪可视化,有助于快速定位问题。
本文介绍了SpringCloud中链路追踪的基础使用,实践操作需在实际项目中深入探索与优化。
相关源代码可在GitHub上查找:master-microservice。