1.Python3爬虫教程-Scapy详解
2.零基础用爬虫爬取网页内容(详细步骤+原理)
3.利用Python爬虫爬取淘宝商品做数据挖掘分析实战篇,源码超详细教程
4.一篇文章教会你利用Python网络爬虫获取Mikan动漫资源
5.11《Python 原生爬虫教程》使用正则表达式进行页面提取
6.爬虫实战用Python采集任意小红书笔记下的统计评论,爬了10000多条,爬虫含二级评论!教程
Python3爬虫教程-Scapy详解
安装Scapy
可以通过命令行或在PyCharm中进行安装。源码在命令行中输入`pip install scapy`完成安装;在PyCharm中,统计短线神源码选择`File->Setting->Python Interpreter`,爬虫然后在弹出的教程窗口中输入`pip install scapy`并执行。
创建爬虫工程
创建工程后,源码根目录下将自动生成`helloworld`文件夹。统计进入该文件夹。爬虫
编写Item类
Item用于存储爬取的教程数据,如爬取**资源时,源码需要包含**名称、统计年代、爬虫评分等信息。
设计Pipeline
Pipeline用于清理HTML数据,将所需信息存储至数据库、文件等介质,爬虫执行完毕后自动调用`process_item`方法。
配置Pipeline
可重写四个方法,实现特定功能。可根据需求定义多个Pipeline,并在`setting.py`中配置,权重越小的Pipeline优先级越高。
设置`setting.py`参数
解释几个重要参数,如是否启用本地缓存,是否启用随机User-Agent,配置User-Agent等。
下载器中间件
使用下载器中间件时需在`settings.py`中设置`DOWNLOADER_MIDDLEWARES`字典,并设置数字优先级,数字越小的中间件优先级越高。
自定义中间件
自定义中间件需实现`process_request`、`process_response`和`process_exception`三个重要函数。
创建爬虫
使用命令`cd`进入项目目录,然后使用`scrapy`命令创建爬虫文件。ventuz源码`spiders`目录将生成新的爬虫文件。
配置爬虫类`scrapy.Spider`
必须定义爬虫名称、允许爬取的域名列表以及开始爬取的URL列表。自定义回调函数以处理返回的数据,还需设置日志处理和资源释放函数。
爬虫相关命令
爬虫教程至此结束,后续将详细讲解实例操作。敬请期待!
零基础用爬虫爬取网页内容(详细步骤+原理)
网络上有许多用 Python 爬取网页内容的教程,但一般需要写代码,没有相应基础的人要想短时间内上手,还是有门槛的。其实绝大多数场景下,用 Web Scraper (一个 Chrome 插件)就能迅速爬到目标内容,重要的是,不用下载东西,也基本不需要代码知识。 在开始之前,有必要简单了解几个问题。 a、爬虫是什么? 自动抓取目标网站内容的工具。 b、爬虫有什么用? 提高数据采集效率。应该没有人想让自己的手指不停的重复复制粘贴的动作,机械性的事情,就应该交给工具去做。快速采集数据,也是分析数据的基础。 c、爬虫的原理是什么? 要了解这一点,需要先了解人类为什么能浏览网页。我们通过输入网址、关键字、点击链接等形式发送请求给目标计算机,然后将目标计算机的BBC源码代码下载到本地,再解析/渲染成看到的页面。这就是上网的过程。 爬虫做的就是模拟这一过程,不过它对比人类动作飞快,且可以自定义抓取内容,然后存放在数据库中供浏览或下载。搜索引擎能够工作,也是类似原理。 但爬虫只是工具,要让工具工作起来,就得让爬虫理解你想要的是什么,这就是我们要做的事情。毕竟,人类的脑电波没法直接流入计算机。也可以说,爬虫的本质就是找规律。
Web Scraper插件的使用步骤: 1、在 Chrome 插件商店搜索 Web Scraper,点击「添加拓展程序」,在浏览器的插件栏里找到蜘蛛网图标。 2、打开要爬取的网页,例如豆瓣 Top 的 URL 是 movie.douban.com/top,同时按 option+command+i 或者 Windows 系统的 ctrl+shift+i 进入开发者模式,看到网页 HTML,点击 Web Scraper 图标进入爬虫页面。 3、创建爬虫:点击 create new sitemap 和 create sitemap,随便输入 sitemap name,如 dbtop,粘贴 start url,注意根据网页布局自定义 start url。确保 URL 能正确爬取所有页面的数据。 4、创建选择器:依次点击 Add new selector,mafc源码选择要爬取的元素,如排名、**名、评分、影评等。点击 Save selecting 保存选择器。 5、爬取数据:点击 sitemap,选择创建的爬虫,点击 scrape 进行爬取。设置请求间隔时间和延迟时间,默认值 ms,点击 Start sraping开始爬取。爬取结束后,数据会在 Web Scraper 页面显示。 6、预览数据:点击 refresh 预览爬取结果,检查数据是否正确。如有问题,返回选择器调整设置。 7、导出数据:点击 Export date as CSV,将数据以 CSV 格式下载。
Web Scraper 的使用步骤简单明了,适合初学者快速上手,尤其对于数据量不大,页面布局规则的网页。然而,不同网站的风格、元素布局、需求差异巨大,实际使用中需观察网站规律,灵活调整策略,才能高效采集数据。掌握爬虫原理和观察网站规律是ak源码关键。对于更复杂的数据采集需求,如需特定条件下的加载、多级页面、等数据,需要更深入的学习和实践。Web Scraper 只是入门工具,理解爬虫原理和规律才是真正用好它的关键。
利用Python爬虫爬取淘宝商品做数据挖掘分析实战篇,超详细教程
项目内容
案例选择商品类目:沙发;数量:共页个商品;筛选条件:天猫、销量从高到低、价格元以上。
以下是分析,源码点击文末链接
项目目的
1. 对商品标题进行文本分析,词云可视化。
2. 不同关键词word对应的sales统计分析。
3. 商品的价格分布情况分析。
4. 商品的销量分布情况分析。
5. 不同价格区间的商品的平均销量分布。
6. 商品价格对销量的影响分析。
7. 商品价格对销售额的影响分析。
8. 不同省份或城市的商品数量分布。
9. 不同省份的商品平均销量分布。
注:本项目仅以以上几项分析为例。
项目步骤
1. 数据采集:Python爬取淘宝网商品数据。
2. 数据清洗和处理。
3. 文本分析:jieba分词、wordcloud可视化。
4. 数据柱形图可视化barh。
5. 数据直方图可视化hist。
6. 数据散点图可视化scatter。
7. 数据回归分析可视化regplot。
工具&模块:
工具:本案例代码编辑工具Anaconda的Spyder。
模块:requests、retrying、missingno、jieba、matplotlib、wordcloud、imread、seaborn等。
原代码和相关文档后台回复“淘宝”下载。
一、爬取数据
因淘宝网是反爬虫的,虽然使用多线程、修改headers参数,但仍然不能保证每次%爬取,所以,我增加了循环爬取,直至所有页爬取成功停止。
说明:淘宝商品页为JSON格式,这里使用正则表达式进行解析。
代码如下:
二、数据清洗、处理:
(此步骤也可以在Excel中完成,再读入数据)
代码如下:
说明:根据需求,本案例中只取了item_loc、raw_title、view_price、view_sales这4列数据,主要对标题、区域、价格、销量进行分析。
代码如下:
三、数据挖掘与分析:
1. 对raw_title列标题进行文本分析:
使用结巴分词器,安装模块pip install jieba。
对title_s(list of list格式)中的每个list的元素(str)进行过滤,剔除不需要的词语,即把停用词表stopwords中有的词语都剔除掉:
为了准确性,这里对过滤后的数据title_clean中的每个list的元素进行去重,即每个标题被分割后的词语唯一。
观察word_count表中的词语,发现jieba默认的词典无法满足需求。
有的词语(如可拆洗、不可拆洗等)却被cut,这里根据需求对词典加入新词(也可以直接在词典dict.txt里面增删,然后载入修改过的dict.txt)。
词云可视化:
安装模块wordcloud。
方法1:pip install wordcloud。
方法2:下载Packages安装:pip install 软件包名称。
软件包下载地址:lfd.uci.edu/~gohlke/pyt...
注意:要把下载的软件包放在Python安装路径下。
代码如下:
分析
1. 组合、整装商品占比很高;
2. 从沙发材质看:布艺沙发占比很高,比皮艺沙发多;
3. 从沙发风格看:简约风格最多,北欧风次之,其他风格排名依次是美式、中式、日式、法式等;
4. 从户型看:小户型占比最高、大小户型次之,大户型最少。
2. 不同关键词word对应的sales之和的统计分析:
(说明:例如词语‘简约’,则统计商品标题中含有‘简约’一词的商品的销量之和,即求出具有‘简约’风格的商品销量之和)
代码如下:
对表df_word_sum中的word和w_s_sum两列数据进行可视化。
(本例中取销量排名前的词语进行绘图)
由图表可知:
1. 组合商品销量最高;
2. 从品类看:布艺沙发销量很高,远超过皮艺沙发;
3. 从户型看:小户型沙发销量最高,大小户型次之,大户型销量最少;
4. 从风格看:简约风销量最高,北欧风次之,其他依次是中式、美式、日式等;
5. 可拆洗、转角类沙发销量可观,也是颇受消费者青睐的。
3. 商品的价格分布情况分析:
分析发现,有一些值太大,为了使可视化效果更加直观,这里我们选择价格小于的商品。
代码如下:
由图表可知:
1. 商品数量随着价格总体呈现下降阶梯形势,价格越高,在售的商品越少;
2. 低价位商品居多,价格在-之间的商品最多,-之间的次之,价格1万以上的商品较少;
3. 价格1万元以上的商品,在售商品数量差异不大。
4. 商品的销量分布情况分析:
同样,为了使可视化效果更加直观,这里我们选择销量大于的商品。
代码如下:
由图表及数据可知:
1. 销量以上的商品仅占3.4%,其中销量-之间的商品最多,-之间的次之;
2. 销量-之间,商品的数量随着销量呈现下降趋势,且趋势陡峭,低销量商品居多;
3. 销量以上的商品很少。
5. 不同价格区间的商品的平均销量分布:
代码如下:
由图表可知:
1. 价格在-之间的商品平均销量最高,-之间的次之,元以上的最低;
2. 总体呈现先增后减的趋势,但最高峰处于相对低价位阶段;
3. 说明广大消费者对购买沙发的需求更多处于低价位阶段,在元以上价位越高平均销量基本是越少。
6. 商品价格对销量的影响分析:
同上,为了使可视化效果更加直观,这里我们选择价格小于的商品。
代码如下:
由图表可知:
1. 总体趋势:随着商品价格增多其销量减少,商品价格对其销量影响很大;
2. 价格-之间的少数商品销量冲的很高,价格-之间的商品多数销量偏低,少数相对较高,但价格以上的商品销量均很低,没有销量突出的商品。
7. 商品价格对销售额的影响分析:
代码如下:
由图表可知:
1. 总体趋势:由线性回归拟合线可以看出,商品销售额随着价格增长呈现上升趋势;
2. 多数商品的价格偏低,销售额也偏低;
3. 价格在0-的商品只有少数销售额较高,价格2万-6万的商品只有3个销售额较高,价格6-万的商品有1个销售额很高,而且是最大值。
8. 不同省份的商品数量分布:
代码如下:
由图表可知:
1. 广东的最多,上海次之,江苏第三,尤其是广东的数量远超过江苏、浙江、上海等地,说明在沙发这个子类目,广东的店铺占主导地位;
2. 江浙沪等地的数量差异不大,基本相当。
9. 不同省份的商品平均销量分布:
代码如下:
热力型地图
源码:Python爬取淘宝商品数据挖掘分析实战
一篇文章教会你利用Python网络爬虫获取Mikan动漫资源
获取Mikan动漫资源的Python爬虫实战
本文将指导你如何利用Python编写网络爬虫,从新一代动漫下载站Mikan Project获取最新动漫资源。目标是通过Python库requests和lxml,配合fake_useragent,实现获取并保存种子链接。
首先,项目的关键在于模拟浏览器行为,处理下一页请求。通过分析网页结构,观察到每增加一页,链接中会包含一个动态变量。使用for循环构建多个请求网址,进行逐一抓取。
在抓取过程中,注意反爬策略,如设置常规的/)。使用SDK Manager.exe安装工具,选择需要的工具,如Build-tools和特定Android版本,同时勾选Extras中的选项,最后点击Install安装。注意,安装过程可能持续数小时。配置环境变量,设置ANDROID_HOME为sdk安装目录,并将平台工具和工具路径添加到Path环境变量中。
1.3 Fiddler安装
直接从官网下载安装(telerik.com/download/fi...)以获取puters connect选项开启。
2.2 模拟器配置
在模拟器设置中,手动更改代理设置,输入本机IP和Fiddler端口,完成与Fiddler的代理连接。
三、移动端自动化控制
3.1 APK包名获取
通过adb命令获取apk包名,确保adb服务启动并连接模拟器,然后在模拟器中获取所需app的包名和Activity。
3.2 Appium使用
使用appium的python包,启动appium服务,编写示例代码操作模拟器,并使用uiautomatorviewer获取元素的Xpath路径。
四、利用mitmproxy抓取存储数据
4.1 基本原理
mitmproxy提供命令行接口mitmdump,用于处理抓取的数据,并将其存储到数据库中,同时支持Python脚本处理请求和响应。
4.2 抓取步骤
使用fiddler分析请求,然后通过mitmdump拦截并保存数据至MySQL数据库。
五、APK脱壳反编译
5.1 脱壳
使用Xposed框架安装FDex2工具,通过Hook ClassLoader方法脱壳APK。推荐从网络下载并安装FDex2工具。
5.2 APK反编译
使用apktool反编译apk文件以获取静态资源,而dex2jar则将.dex文件转换为Java源代码。此过程需谨慎处理多个.dex文件。
5.3 JAD-反编译class文件
借助GitHub上的JAD工具将.class文件反编译为Java源代码,便于阅读和理解。