皮皮网
皮皮网
高德导航源码

【网吧电影菜单源码】【预知指标源码下载】【数据源码下载】rviz源码

时间:2025-01-23 17:35:47 分类:休闲 编辑:农夫果园源码下载
1.hdl_graph_slam|后端优化|hdl_graph_slam_nodelet.cpp|源码解读(四)
2.ROS博客基于ROS的源码自动驾驶数据集可视化项目(附源代码)
3.Autoware.universe 源码解读(一)
4.学习笔记ROS2纯小白 - MoveIt!(humble)安装、初识与C++实现运动规划
5.cruise-automation Webviz 简介
6.单目USB摄像和Intel Realsense D435i 头+ Apriltag_ros配置和实现对相机姿态的源码估计

rviz源码

hdl_graph_slam|后端优化|hdl_graph_slam_nodelet.cpp|源码解读(四)

       hdl_graph_slam源码解读(八):后端优化

       后端概率图构建核心:hdl_graph_slam_nodelet.cpp

       整体介绍

       这是整个系统建图的核心,综合所有信息进行优化。源码所有的源码信息都会发送到这个节点并加入概率图中。

       包含信息

       1)前端里程计传入的源码位姿和点云

       2)gps信息

       3)Imu信息

       4)平面拟合的参数信息

       处理信息步骤

       1)在对应的callback函数中接收信息,并放入相应的源码网吧电影菜单源码队列

       2)根据时间戳对队列中的信息进行顺序处理,加入概率图

       其他内容

       1)执行图优化,源码这是源码一个定时执行的函数,闭环检测也在这个函数里

       2)生成全局地图并定时发送,源码即把所有关键帧拼一起,源码得到全局点云地图,源码然后在一个定时函数里发送到rviz上去

       3)在rviz中显示顶点和边,源码如果运行程序,源码会看到rviz中把概率图可视化了

       关键帧同步与优化

       cloud_callback

       cloud_callback(const nav_msgs::OdometryConstPtr& odom_msg,源码const sensor_msgs::PointCloud2::ConstPtr& cloud_msg)

       该函数主要是odom信息与cloud信息的同步,同步之后检查关键帧是源码否更新。

       关键帧判断:这里主要看关键帧设置的这两个阈值keyframe_delta_trans、keyframe_delta_angle

       变成关键帧的要求就是:/hdl_graph_slam/include/hdl_graph_slam/keyframe_updater.hpp

       优化函数

       optimization_timer_callback(const ros::TimerEvent& event)

       函数功能:将所有的位姿放在posegraph中开始优化

       loop detection 函数:主要就是将当前帧和历史帧遍历,寻找loop。

       闭环匹配与信息矩阵计算

       匹配与闭环检测

       潜在闭环完成匹配(matching 函数)

       不同loop的信息矩阵计算(hdl_graph_slam/information_matrix_calculator.cpp)

       gps对应的信息矩阵

       hdl_graph_slam/graph_slam.cpp

       添加地面约束

       使用add_se3_plane_edge函数的代码

       执行图优化

       优化函数optimization_timer_callback

       执行图优化,闭环检测检测闭环并加到了概率图中,优化前

       生成简化版关键帧,KeyFrameSnapshot用于地图拼接

       生成地图并定时发送

       生成地图:简化版关键帧拼接

       定时发送:src/hdl_graph_slam_nodelet.cpp文件中

       系统性能与扩展性

       hdl_graph_slam性能问题在于帧间匹配和闭环检测精度不足,系统代码设计好,模块化强,易于扩展多传感器数据融合。

       总结

       hdl_graph_slam后端优化是关键,涉及大量信息融合与概率图构建。系统设计清晰,扩展性强,但在性能上需改进。

ROS博客基于ROS的自动驾驶数据集可视化项目(附源代码)

       项目简介

       基于加州大学伯克利分校 MSC Lab的自动驾驶数据集,本项目旨在进行数据集的可视化。项目源代码已上传至 GitHub,英文版文章与演示视频也已准备就绪。

       数据集展示

       左侧展示了GPS信号的可视化,通过 Mapviz 工具,预知指标源码下载将行驶过程中走过的路径显示出来,左上角则呈现了车前摄像头的视角。右侧是自定义的可视化,利用绿色代表 y 轴正方向,蓝色表示 x 轴正方向。紫色圆点表示汽车行驶过程中各个方向的加速度信息,天蓝色箭头指示汽车前进方向,绿色则代表不同强度的加速度。

       问题与解决方案

       在使用 Mapviz 可视化 GPS 信号时,遇到了数据格式不匹配的问题。通过在自定义的 package 中编写 `trans_GPS.cpp` 文件,成功实现了数据格式转换,解决了数据可视化的问题。同时,还撰写了关于 Mapviz 的基础使用教程。

       加速度信息的可视化涉及确定坐标轴方向、避免信息跳动以及直观显示加速度大小。通过在 RVIZ 中绘制 x 和 y 轴,并使用平滑器处理频繁读取的 IMU 数据,成功解决了这些问题。极坐标系的引入使得加速度大小的显示更为直观。

       汽车前进方向的可视化涉及到姿态信息的获取与 RVIZ 显示角度的调整。通过分析 IMU 的 orientation 数据,并设置 marker 的 orientation 值,实现了方向的正确显示。

       相机信息的可视化面临格式转换问题。通过使用 `image_transport` 包装解决了传感器数据格式不兼容的问题。

       总结

       在本项目中,通过学习与实践 ROS 相关知识,成功实现了自动驾驶数据集的可视化。接下来,将集中精力深入学习 OSM 的使用,并着手进行 GPS 定位与搜索的小项目开发。

Autoware.universe 源码解读(一)

       在Autoware的自动驾驶仿真软件中,launch文件起着至关重要的数据源码下载作用。autoware.launch.xml是其中一个基础的launch文件,它使用XML语言编写,以定义启动ROS节点、参数和设置默认值。这个文件的核心结构包括version="1.0"(XML 1.0版本)和encoding="UTF-8"(UTF-8编码)。

       文件的前半部分侧重于参数定义和设置,包括地图路径、车辆模型、传感器模型和点云容器,这些都可以通过传递参数进行灵活调整。例如,vehicle_id和launch_vehicle_interface是两个全局参数,vehicle_id默认值为环境变量VEHICLE_ID的值,而launch_vehicle_interface默认为true,表示是否启动车辆接口。

       参数check_external_emergency_heartbeat控制外部紧急停车功能,当不需要时需将其设为false。system_run_mode和launch_system_monitor等参数分别定义了系统的运行模式和是否启动系统监视器。此外,rviz可视化工具的启用、rviz配置文件路径,以及感知模式的选择等也被详细定义。

       launch文件中还包括一个include标签,引入了global_params.launch.py,该文件通过arg标签传递参数,以进行更精细的配置。例如,如果launch_vehicle设置为true,它将启动vehicle.launch.xml,并传递参数。

       总的来说,autoware.launch.xml通过巧妙地定义和传递参数,灵活地控制和配置Autoware的各个子系统,以实现自动驾驶的模拟和测试。

学习笔记ROS2纯小白 - MoveIt!(humble)安装、昆仑奴源码初识与C++实现运动规划

       文章内容

       前言

       在本系列第四篇学习笔记中,我们重点介绍如何安装MoveIt、如何在RViz中使用MoveIt,以及如何通过C++程序加入障碍物并进行运动规划。经过一番波折,终于开始与机器人相关任务,尤其是RViz的可视化功能,让这一过程变得更为直观。在尝试配置环境时,由于系统误操作导致Ubuntu无法正常开机,最终花费半天时间重装系统,尽管过程坎坷,但这一经历让我们的技术积累更加坚实。

       前作后续

       在安装ROS 2和Colcon后,确保系统为最新版本并安装mixin Colcon和vsctool。接下来,创建一个Colcon工作空间并下载教程和剩余MoveIt源代码。由于网络环境因素,这一过程可能较为不稳定,需要反复尝试和优化配置。完成依赖项的控制后,使用Concol工作空间并进行相应的build和setup操作。将默认ROS 2中间件(RMW)更改为Cyclone DDS,以确保环境的兼容性。

       使用Docker容器快速建立MoveIt环境,为后续机器人开发提供方便。

       在RViz中使用MoveIt插件进行运动规划,通过交互设置机器人状态,测试规划器并进行可视化输出。在RViz中引入机器人模型,配置固定坐标系,进行机器人插件的详细配置。

       在模拟环境中,与可视化机器人交互,调整姿态和运动轨迹。unity ui源码分析演示如何通过规划实现机器人从起始到目标位姿的运动,同时利用RViz工具可视化路径和操作流程。

       通过C++程序实现MoveIt的运动规划功能,首先创建一个ROS节点和执行器,实现机器人运动控制。插入代码段,完成规划与执行,并在RViz中实时反馈。

       进一步,实现视觉化功能,通过moveit_visual_tools插件增强机器人开发的可视化体验。在程序中添加依赖项,构建并初始化MoveItVisualTools,实现与RViz的交互。

       在RViz中实现路径的可视化,通过封装函数处理视觉化信息,确保代码的简洁和高效。最后,通过配置和运行程序,观察RViz中的实时反馈,完成整个工作流程。

       总结

       通过本系列的学习笔记,我们系统地掌握了ROS 2环境的搭建、MoveIt的安装与使用、C++实现运动规划以及RViz的可视化技巧。尽管过程中遇到了挑战,如系统配置问题和网络环境的不稳定,但通过坚持不懈的努力,成功实现了从理论到实践的转变。这不仅加深了对机器人开发技术的理解,也锻炼了问题解决和调试能力。未来,我们将在实践中继续深化对这些技术的理解,为更复杂的机器人应用奠定坚实的基础。

cruise-automation Webviz 简介

       cruise-automation项目旨在开发一系列与现有开源工具如rviz、rqt console、rqt_runtime_monitor、rostopic echo和rqt_plot相呼应的可视化面板。通过进一步的开发,添加了针对Cruise特定需求的自定义面板,远离传统工具,以更精细地满足工程师解决问题的需要,并保持对开放源代码机器人社区的实用性。随着定制化和对过时工具逐渐迁移,这些面板功能日益精进。

       项目目标是替代ROS中的可视化工具,如rviz、rqt等。Webviz实现这一目标,提供直观且功能丰富的界面。在试用过程中,发现其稳定性高、加载速度快、使用便捷。以下是Webviz的安装和运行步骤,假设操作系统为Ubuntu .。

       Webviz与ROS数据传递通过rosbridge_suite进行。对于实时显示数据(而非使用bag文件),需要安装rosbridge_suite。

       Webviz启动默认使用websocket端口,无需调整,连接时会自动使用该端口。

       安装nodejs时,遵循github.com/nodesource/d...指南,选择较旧版本(如v.x,避免新版本编译问题)。

       接下是Webviz编译过程:

       下载代码。

       执行编译命令,确保根目录下安装了所有依赖。

       再次执行编译。

       运行编译好的程序,浏览器将直接打开预览界面(推荐使用Chrome浏览器)。

       测试Webviz效果时,可使用两个示例topic:速腾的lidar数据和gnss定位信息(默认时间坐标,也可切换为xy坐标形式)。实测效果如图所示,展示了Webviz在可视化数据方面的强大能力。

单目USB摄像和Intel Realsense Di 头+ Apriltag_ros配置和实现对相机姿态的估计

       配置平台:ROS版本:noetic/melodic,Ubuntu:.LTS/.LTS

       一:AprilTag_ros的配置

       1.1 usb摄像头的安装和使用

       1.1.1下载源码

       1.1.2编译工作空间

       1.1.3添加usb_cam属性文件

       1.1.4编译usb_cam源码

       回到工作空间的src文件中,再去usb_cam中进行编译

       5.测试USB摄像头

       1)运行ROS

       回到usb_cam的launch文件夹中,运行usb_cam的功能包

       1.2 AprilTag_ros包的安装

       安装依赖库apriltag

       编译依赖库apriltag

       进入 apriltag 文件夹中,然后新建文件夹build

       安装AprilTag_ros包

       将源码拷贝到你的工作空间中的src工作目录下

       回到工作空间进行编译

       1.3 单目摄像机的标定

       摄像机标定是通过寻找对象在图像与现实世界的转换数学关系,找出其定量的联系,从而实现从图像中测量出现实中实际数据的目的,基于此才能实现后面的位姿检测。

       1.3.1安装标定功能包

       1.3.2打开摄像头进行标定

       第二条命令参数说明:size:棋盘内交叉点的个数,行*列square:一个格子的边长,单位是mimage:订阅摄像头发布的图像话题(ROS topic)camera:寻找相应的设备相机名(现实情况应该是/dev,仿真的话,不清楚)

       摄像机的校准是以一个由黑白方块组成的棋盘为基准进行的,如图8-8所示。从下面的地址下载8x6国际象棋棋盘,并打印出来后将其贴到一个平坦的纸箱。有时也会打印成超过1米的棋盘,但这里用的是A4纸。作为参考,8x6棋盘横向有9个方块,所以有8个交叉点,而竖向有7个方块,有6个交叉点,所以它被称为8x6棋盘。

       /AprilRobotic... Tag Size Definition 部分可以看到并排的6个二维码,下面的字符串(如:“Tagh” 和 “TagCircleh7”)就是二维码类型,直接替换即可。其他参数使用默认值即可。

       2.配置 tags.yaml

       这个文件只有两个标签可以编写。

       这里面写要使用多少个二维码,apriltag_ros 允许一张中出现多个二维码,但一定要明确每个二维码类型,如果想要添加的话这样写就可以,但记得两个标签都要添加:

       standalone_tags解释:

       id:你给每个二维码的编号,可以从任意数字开始,只要你自己能区分哪个号是哪个二维码就好;

       size:二维码的长度。这个值是需要手动测量出来的,不同类型的二维码测量方式不同,具体可以看他的链接 github.com/AprilRobotic... Tag Size Definition 部分,红色箭头就是你需要手动侧脸的二维码长度,单位是米,然后填写到这里;

       name:和id一样,这是为了更好地区分可以任起;

       tag_bundles注释:

       修改 continuous_detection.launch 文件

       打开 apriltag_ros/launch/continuous_detection.launch 文件。

       需要修改的主要有两个标签:

       这两个值是在 rostopic list中查看相机发布的话题中看见,如果你用的不是realsense,那么需要按照相机包发布出来的话题名修改,这里用的是默认设置的 realsense 相机话题。

       注意:“camera_name” 一定只能用前缀,如果多加了 “/” 会导致算法订阅到的话题变成了 “/camera/color//image_raw” 这样是不会出数据的,因为后面其实是做了一个字符串拼接:

       最终修改如下:

       4.启动 apriltag_ros 算法

       如果没有出现红色的报错说明启动成功了,如果有则检查 yaml 文件有没有出现多一个逗号或者省略号之类的。

       然后再开一个窗口就可以订阅推算出来的话题:

       正确检测到的应该会有下面的信息:

cartographer_ros定位功能位姿获取与重定位设置

       小白在机器人定位项目中使用cartographer进行定位,面临位姿获取频率低的问题,测试显示激光频率~hz时,获取位姿频率仅为5hz。为解决此问题,尝试了以下方法:

       首先,对cartographer进行源码安装。

       接着,运行cartographer_rosd的demo,参考.launch运行文件和.lua配置文件,并开启pure localization功能。

       尝试通过tf变换获取位姿坐标,但发现频率受限于5hz左右。为解决此问题,建立tf变换节点,发布2D位姿topic,实现高频率的位姿获取。

       深入源码修改,添加::ros::Publisher _pose_pub,对 node.cc进行调整,从而获取高频率的位姿topic。

       在rviz中,利用“2D Pose Estimate”功能,发布/initialpose话题,并根据机器人当前位置进行重定位设置。通过点击地图位置,发布包括x,y和theta的topic进行重定位。

       总结流程,通过源码修改和rviz重定位设置,实现了高频率的位姿获取及重定位功能。若有疑问,欢迎交流,共同学习。

ROS入门笔记(七):详解ROS文件系统

       ROS入门笔记(七):详细解析ROS文件系统

       理解ROS工程的基础架构是关键。本章深入探讨了ROS的工程结构,特别是catkin编译系统、工作空间的创建与组织、package的构建以及常见文件的作用。这些内容有助于我们正确地建立和管理ROS项目。

       Catkin编译系统

       ROS项目采用Catkin编译系统,它是基于CMake的高效工具,用于大型项目的编译与管理。早期的rosbuild已不适用,Catkin在Groovy版本中引入,提供了简化编译、更好的可移植性和跨平台支持,如今大部分核心软件包已切换至Catkin。

       工作空间结构

       Catkin工作空间就像一个仓库,包含src、build和devel三个核心路径。src存放源代码,build用于编译,而devel则管理环境变量。创建和编译工作空间是ROS开发的基础步骤。

       Package的组织

       Package是工作空间的基本单元,包含CMakeLists.txt和package.xml等文件。CMakeLists.txt定义编译规则,而package.xml则是包的详细描述,如依赖和许可信息。

       其他常见文件

       launch文件:打包并启动程序,指定参数和控制指令。

       msg/srv/action文件:自定义数据结构,用于消息、服务和动作的交互。

       urdf/xacro:描述机器人模型的物理结构。

       yaml文件:存储参数配置。

       3D模型文件:dae/stl,用于3D模型展示。

       rviz文件:配置RViz视窗的显示设置。

       掌握这些基础文件和结构,是ROS开发和调试的基础。建议初学者从Catkin系统开始学习,逐步构建和管理项目。

本文地址:http://8o.net.cn/html/50a158598364.html

copyright © 2016 powered by 皮皮网   sitemap