【197的源码补码】【快速解锁指标源码】【mcst指标源码大全】图神经训练源码

时间:2024-11-14 14:29:21 来源:微外卖源码 分类:综合

1.神经网络 PyTorch Geometric 入门教程
2.图神经网络学习笔记之二(node2vec)
3.图神经网络入门示例:使用PyTorch Geometric进行节点分类
4.用图神经网络解决小样本问题(含代码)
5.图神经网络的图神Inductive learning 和 Transductive learning
6.图神经网络(GNN)入门之旅(四)-GraphSAGE和PinSAGE

图神经训练源码

神经网络 PyTorch Geometric 入门教程

       图神经网络(GNN)近年来在学术界得到了广泛关注,尤其由于其能够处理不规则输入的经训能力。GNN 通过信息传递、练源转换和聚合来提取特征,图神类似于卷积神经网络(CNN),经训但 GNN 可以处理点云等不规则输入,练源197的源码补码而 CNN 仅适用于固定尺寸的图神输入,如。经训

       PyTorch Geometric(PyG)是练源一个基于 PyTorch 的图神经网络库,提供了一套方便复现论文方法的图神实现和常用数据集,使得使用 GNN 变得更加简单。经训它的练源用法与 PyTorch 类似,因此对于熟悉 PyTorch 的图神用户而言,可以快速上手。经训

       在 PyG 中,练源构建图需要两个关键要素:节点和边。通过使用 `torch_geometric.data.Data` 类,可以定义图的结构,该类提供了五个属性,每个属性并非必须,可以为空。进一步地,`Data` 对象不限于这些属性,还可以通过 `data.face` 属性扩展,用张量保存三维网格中三角形的连接信息。

       值得注意的是,在 `Data` 对象中包含了样本的标签,这与 PyTorch 稍有不同。在 PyTorch 中,通过重写 `Dataset` 的 `__getitem__()` 方法根据索引返回样本和标签。而在 PyG 中,使用 `get()` 函数根据索引返回 `torch_geometric.data.Data` 类型的数据,其中包含了数据和标签。

       下面是一个未加权无向图的例子,包括3个节点和4条边。由于是无向图,边的表示方式为 `(0 -> 1)`、`(1 -> 0)`、`(1 -> 2)` 和 `(2 -> 1)`。快速解锁指标源码每个节点都有自己的特征。这个图可以使用 `torch_geometric.data.Data` 类表示如下。在边的表示中,`edge_index` 由两个列表构成,分别表示边的起始点和目标节点。

       对于 `edge_index` 的存储,通常需要先转置然后使用 `contiguous()` 方法。关于 `contiguous()` 函数的作用,可以查阅 PyTorch 文档。

       综上所述,`Data` 对象的基本属性包括 `x`(节点特征)、`edge_index`(边的索引)、`pos`(节点位置)和 `y`(样本标签)。在构建 Dataset 时,可以使用 PyG 提供的工具,如 `TUDataset`,通过简单的代码加载数据集,并通过索引访问每个数据。

       在 PyG 中,通过 `Dataset` 和 `DataLoader` 进行数据管理和并行处理,其中 `DataLoader` 可以方便地使用 mini-batch。`torch_geometric.data.Dataset` 继承自 `torch.utils.data.Dataset`,提供了数据集管理和预处理的功能。

       为了自定义数据集,可以继承 `torch_geometric.data.Dataset` 类,实现数据加载、预处理和数据转换。在初始化方法中,需要传入数据存放的路径,并通过 `pre_transform` 和 `pre_filter` 方法对数据进行预处理。`process()` 方法用于生成处理后的数据,通常将原始数据转换为 `pt` 格式,以便在 `get()` 方法中使用 `torch.load()` 函数加载。

       数据增强是计算机视觉领域常见的实践,PyG 提供了专门的 `transforms`,可以对输入数据进行变换,如生成最近邻图或在点坐标上随机平移等操作。通过 `torch_geometric.transforms.Compose` 可以封装一系列的mcst指标源码大全 `transforms`。

       在模型训练方面,可以使用 PyG 提供的工具构建和训练 GNN 模型。例如,使用简单的 GCN 层在 Cora 数据集上进行实验。通过加载数据集、定义模型结构、训练模型和评估模型性能,可以完成基本的 GNN 模型训练过程。

       总之,PyTorch Geometric 提供了构建和训练图神经网络的强大框架,包括图数据结构处理、数据集管理和模型训练工具,使得 GNN 应用更加便捷和高效。

图神经网络学习笔记之二(node2vec)

       图神经网络学习笔记之二(node2vec):探索节点向量的构建艺术

       在图数据分析的世界里,将整个图中的节点转化为统一的embedding维度向量,就像word2vec中的词向量,是一个至关重要的步骤。我们首先将节点通过one-hot编码,然后通过一个嵌入矩阵,将这些高维信息压缩为低维向量,这就是node2vec的核心思想。关键在于如何构造这个巧妙的嵌入矩阵,使得相似节点在映射后的空间中拥有高度的相似度。

       node2vec:探索节点相似性的智能算法

       node2vec的核心在于理解节点间的两种相似性:同质性与结构等价性。同质性强调节点与其周围节点的相似,而结构等价性关注节点在图中的位置相似。为了实现这种效果,它采用了随机游走策略,这是一种自监督学习方法,无需标签或特征,但能捕捉到节点间潜在的联系。

       随机游走策略的核心在于定义从一个节点到另一个节点的概率,这取决于两个节点在嵌入空间中的相似性。理想情况下,概率正比于它们的向量点积。node2vec通过调整两个超参数,p和q,控制游走策略的gin课程带源码深度优先(p小)或广度优先(q小),以平衡同质性与结构性的探索。

       优化目标与策略调整

       node2vec的目标是最大化给定节点条件下,其邻居节点出现的概率。它借鉴了skip-gram模型的思想,采用负采样技术减少计算成本。负采样通过选取负样本,控制梯度下降的复杂度,使得高频词在训练中得到更充分的考虑。

       通过实验,我们发现,随机游走策略(p和q值)以及embedding维度对模型效果有着显著影响。增加随机游走的路径长度和次数,以及增加节点对的上下文数量,都可以提升嵌入的性能,但效果逐渐趋于稳定。

       节点向量的力量:构建边的嵌入

       令人兴奋的是,node2vec的节点嵌入并不仅仅局限于节点本身。通过简单的二元运算,如平均、哈达玛积(元素相乘)、L1和L2距离计算,我们可以扩展到边的嵌入,使模型适用于涉及节点和边的预测任务,进一步增强了其在复杂网络分析中的应用价值。

       总结,node2vec通过巧妙的随机游走策略和优化目标,为我们提供了一种强大而灵活的方法,将图中的节点转化为高效、富有结构的向量表示,为网络分析和理解奠定了坚实的基础。

图神经网络入门示例:使用PyTorch Geometric进行节点分类

       本文介绍利用图神经网络进行节点分类的实践过程,具体采用的是 PyTorch Geometric 库。首先引入 Facebook Large Page-Page Network 数据集,其中包含 , 个页面,分为四类并具有不同大小的特征向量。数据集包含页面间的链接关系以及页面特征信息。

       接着,我们用 PyTorch 创建数据对象以适应训练图神经网络。查找保存的源码对特征进行规范化处理,确保每个节点的特征向量大小一致,对于长度小于最大值()的向量,我们将以0填充。对特征进行归一化。

       数据集被分成训练集和测试集,用于模型评估。随后,本文展示了如何使用多层感知器(MLP)和图卷积网络(GCN)进行节点分类。MLP 模型基于特征向量进行训练,而 GCN 模型则考虑了节点之间的链接信息。

       使用MLP,尽管它能够将大部分特征纳入模型,但是预测结果并不理想,分类准确率为%。相比之下,GCN 模型的准确率显著提高至%,显示出更好地捕获和利用节点间的关系。

       通过可视化预测结果,可以看出 GCN 模型能更明显地区分不同类别的节点。这种能力得益于 GCN 通过图结构进行信息传播的方式,有效利用了邻接节点的特征。

       总结,本文说明了如何使用 PyTorch Geometric 进行图神经网络建模和训练。通过对比 MLP 和 GCN 的性能,强调了在节点分类任务中考虑图结构的重要性。此类技术在社交网络分析、推荐系统等领域有广泛应用。

用图神经网络解决小样本问题(含代码)

       本文探讨的是图神经网络在小样本学习(Few-Shot Learning)领域的应用,具体论文为《Few-Shot Learning With Graph Neural Networks》。主要介绍该方法的理论设计与关键代码实现。此方法以5-way 1-shot任务为例,应用于mini-imagenet数据集,旨在解决小样本问题。

       方法框架概述如下:

       1. 每个批次输入包含支持集(五个样本)与查询集(一个样本)。

       2. 构建图结构,包含节点特征与邻接矩阵。节点特征通过卷积神经网络+全连接层实现编码,再与节点标签的一hot编码拼接。编码后,每个输入图像被编码为(batch_size=, feature_dim=)。

       3. 进行迭代训练,初始化对角阵。邻接矩阵与节点特征在迭代过程中动态更新,依据节点之间的相似度计算得到。

       4. 通过堆叠的卷积实现通道数降维,获得节点之间的相似度矩阵。利用此矩阵,执行消息传播,实现GNN层的堆叠,最终将支持集的标签和样本信息传播至查询集。

       5. 交叉熵计算仅利用查询集的预测值与真实标签,因为支持集的标签信息已融合至网络中。

       总结而言,图网络的消息传播机制是本文的关键,它能将支持集的样本特征与标签信息传播至查询集。此方法不仅提供了一种框架性的思路,也成为近年来GNN+Few-Shot领域研究的对比基准,展现了其重要性与典型性。欢迎加入小样本学习交流群,关注公众号“嬉皮工匠”获取更多信息。

图神经网络的Inductive learning 和 Transductive learning

       在深入研究图神经网络时,遇到了两个关键概念:inductive learning和transductive learning。它们的区别可以从任务级别和数据处理方式来理解。首先,inductive learning,通常在图级别任务中应用,比如图分类,它将多个图划分为训练、验证和测试集,模型在训练阶段只使用训练集数据,对测试集保持未知,具有较好的泛化能力。这种学习方式的典型例子是GCN,它在训练时并不考虑测试集的节点信息。

       相反,transductive learning则是针对节点级别的任务,如节点分类或链接预测,它的训练/验证/测试集是在同一图中进行划分的。在这种情况下,模型在训练时会使用到测试集的数据,即使没有标签,也能通过特征分布学习额外信息,增加模型预测的准确性。但值得注意的是,每次有新的样本加入,可能需要重新训练模型。

       在图神经网络的具体实现中,inductive learning如GraphSAGE,会限制训练时只使用训练样本间的边,不涉及测试样本,这使得模型能在未知节点上生成嵌入。而transductive学习则打破了这种限制,允许模型在训练过程中利用所有节点的信息。

       总结来说,inductive learning和transductive learning的区别在于数据的使用方式和任务的适应性,前者更注重泛化,后者在特定任务中可能表现更优,但可能需要更多的实时调整。理解这些概念有助于在实际应用中选择合适的图神经网络学习策略。

图神经网络(GNN)入门之旅(四)-GraphSAGE和PinSAGE

       图神经网络(GNN)理论深入探讨中,我们已经了解了GCN的基础。接下来,让我们比较GCN和GraphSAGE(特别是PinSAGE)之间的关键差异:

       GCN是"直推式",全图计算,一次更新所有节点,适合全局信息捕捉,但计算量随着节点数增加而增加,不直接适用于超大图,且对新节点的泛化能力有限。

       相比之下,GraphSAGE是"归纳式",通过采样邻居节点进行批训练,适用于超大图,且具有更好的泛化性。它可以为新节点生成embedding,学习节点和邻接节点间的映射关系,更灵活适应有向边,并支持多种聚合函数。

       尽管GraphSAGE看似优于GCN,但实际上两者在本质上相似,只是视角不同。GCN的公式展示了其核心思想——节点特征的聚合。理解了GraphSAGE,GCN的复杂性可能就没那么难以理解了。

       接下来,我们关注SAGE和PinSAGE的核心特点:

       SAGE: 重点在于学习节点表示法,而非固定节点表示。通过采样邻居特征并应用聚合函数生成embedding,提高灵活性。

       PinSAGE: 建立在SAGE之上,引入了重要性采样、边权重和高效的MapReduce推理,适用于大规模图和生产者-消费者模式训练。

       训练与DeepWalk和Node2Vec相比,PinSAGE利用监督学习和节点特征,适用于大规模和有监督的图学习任务。

图神经网络pytorch库(图神经网络keras)

       GNN——图网络相关知识整理

       GNN是对保持图对称性(置换不变性)的图的所有属性(节点、边、全局上下文)的可优化变换。我们将使用Gilmer等人提出的“消息传递神经网络”框架构建GNN,并使用Battaglia等人介绍的图网络网络架构示意图。

       â€œç‹—男女”一梗是源于陈翔,在年8月日晚发微博“GNN”并且配图《水浒传》,一张是武松举刀杀敌,一张是武大郎、西门庆、潘金莲,疑似暗讽王宝强前妻马蓉和经纪人宋喆的不正当关系,指责两人为狗男女。

       GNN是一种连接模型,通过网络中节点之间的信息传递的方式来获取图中的依存关系,GNN通过从节点任意深度的邻居来更新该节点状态,这个状态能够表示状态信息。对于GNN模型,我们引入了按图类型,传播类型和训练类型分类的变体。

PyTorch到底好用在哪里?

       1、-是的,pytorch是一个非常好的强化学习平台,它有一些非常棒的框架用于强化学习,如OpenAIGym,Universe,Tensorflow等。您可以使用这些框架来构建强化学习模型,并使用pytorch优化器来训练它们。

       2、PyTorch和TensorFlow都很好,各有千秋。PyTorch和TensorFlow是目前最主流的两个深度学习框架,绝大多数研究者会选择PyTorch或者TensorFlow进行深度学习的入门学习。

       3、pytorch动态计算图有什么好处数据计算Torch自称为神经网络界的Numpy,因为他能将torch产生的tensor放在GPU中加速运算(前提是你有合适的GPU),就像Numpy会把array放在CPU中加速运算。

       4、基于大数据分析和深度学习而发展出来的人工智能本质上已经无法离开python的支持,目前世界优秀的人工智能学习框架如Google的TransorFlow、FaceBook的PyTorch以及开源社区的神经网络库Karas等是用python实现的。

       5、Pytorch是机器学习和Python上的免费软件包,非常易于使用。语法模拟numpy,因此,如果你在python中有一些科学计算经验,那么会相当有用的。

       å¦‚何用PyTorch实现递归神经网络

       1、第一步:创建模型,模型包含两部分,第一部分是Pytorch提供的RNN层,第二部分是一个全连接层,用于将RNN的输出转换成输出目标的维度。

       2、人脸检测和识别网络包括:FaceBoxes、LFFD、VarGFaceNet。人体姿态识别网络包括:StackedHourglass、NetworksSimpleBaselines、LPN。

       3、一个全连接ReLU神经网络,一个隐藏层,没有bias。用来从x预测y,使用L2Loss。这一实现完全使用numpy来计算前向神经网络,loss,和反向传播。我们使用PyTorchtensors来创建前向神经网络,计算损失,以及反向传播。

       4、skip_grams中每行的第二列取出来存起来即可最后第三步就是构建dataset,然后定义DataLoader模型架构图:注意,隐层的激活函数是线性的,相当于没做任何处理。

       5、input就是shape=(seq_length,batch_size,input_size)的张量ht是shape=(num_layers*num_directions,batch_size,hidden_size)的张量,它包含了在当前这个batch_size中每个句子的初始隐藏状态。其中num_layers就是LSTM的层数。

pytorch是什么?

       1、项目名叫Pytorch,模块名叫torch,这个问题没有为什么,开发者就是这么定义的。就跟OpenCV一样项目名叫OpenCV,模块名叫cv2。项目名叫Pillow,模块名叫PIL。

       2、pytorch不是anaconda自带的。anaconda自带sklearn用于机器学习,但是没有自带pytorch用于深度学习,所以需要自己操作一下,安装pytorch。首先,假定我们已经安装好了anaconda,那么我们就能使用conda来安装pytorch。

       3、作者,科技猛兽编辑,极市平台这篇文章从应用的角度出发,介绍DP和DDP分别在什么情况下使用,以及各自的使用方法。以及DDP的保存和加载模型的策略,和如何同时使用DDP和模型并行(modelparallel)。

       4、pytorch动态计算图有什么好处数据计算Torch自称为神经网络界的Numpy,因为他能将torch产生的tensor放在GPU中加速运算(前提是你有合适的GPU),就像Numpy会把array放在CPU中加速运算。

       5、三个层次。pytorch数据结构上的抽象是:tensor-variable-net三个层次。基本上利用variable和net这个层次就能够很方便的实现网络了Tensor。

       6、明敏发自凹非寺量子位报道|公众号QbitAI到底是怎样的一个bug,能让%的Pytorch库中招,就连特斯拉AI总监深受困扰?还别说,这个bug虽小,但有够“狡猾”的。

一文详解图神经网络(二)

       å·ç§¯ç¥žç»ç½‘络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。

       å›¾ç¥žç»ç½‘络就是专门用来处理图数据的神经网络架构。具体来说,会给定图的每个邻接矩阵和节点特征,通过将这两个输入进行某种图上的映射。从而得到每个节点下一层的特征。

       â‘¡å•ä¸ªç¥žç»å…ƒï¼šçº¿æ€§å¯åˆ†çš„情况下,本质是一条直线,,这条直线将数据划分为两类。而线性分类器本身就是一个单层神经网络。③神经网络:非线性可分的情况下,神经网络通过多个隐层的方法来实现非线性的函数。

pytorch和python的区别是什么?

       1、Python和pycharm是不一样的,二者有本质的区别。Python是一门计算机程序设计语言;而pycharm是一款集成开发环境,是用来辅助开发的,所以两者是不一样的。

       2、它们的下载地址和安装的方式不同。python是一种基本编译环境,就像java和jar一样。pycharm是一种集成开发环境,为了能够让你快速编写代码,便于调试。

       3、PyTorch本质上是Numpy的替代者,而且支持GPU、带有高级功能,可以用来搭建和训练深度神经网络。如果你熟悉Numpy、Python以及常见的深度学习概念(卷积层、循环层、SGD等),会非常容易上手PyTorch。

       4、pycharm和python区别:首先它们的下载地址和安装的方式不同。python是一种基本编译环境,就像java和jar一样。pycharm是一种集成开发环境,为了能够让你快速编写代码,便于调试。

图神经网络学习笔记1Graph embedding

       Graph Embedding

       当使用One-hot编码表示图上的每个节点时,容易出现节点数较多时向量长度过长以及丢失节点在图上信息的问题。

       为简化节点特征长度并保留图上信息,采用Graph Embedding,即在图上计算每个节点的嵌入。

       本文介绍5种主要Graph Embedding方法:Deep Walk、LINE、SDNE、Node2Vec和Struc2Vec。

       Deep Walk通过随机游走生成节点序列,使用word2vec学习每个节点的嵌入,适用于无向图。

       LINE考虑节点的一阶和二阶相似性,分别优化,适用于大规模图,能捕获节点的局部结构信息。

       Node2Vec结合DFS和BFS采样策略,通过随机游走生成序列,使用SkipGram学习嵌入,适用于大规模图。

       Struc2Vec通过构建层次结构并优化相似性,学习节点嵌入,适用于节点分类任务,结构标识比邻居标识更重要。

       SDNE使用多层非线性结构自动编码器优化一阶和二阶相似度,学习节点嵌入,对稀疏网络具有鲁棒性。

       总结各方法特点如下:

       Deep Walk:随机游走生成序列,SkipGram学习嵌入。

       Node2Vec:结合DFS和BFS采样,随机游走生成序列,SkipGram学习嵌入。

       LINE:分别优化一阶和二阶相似性,学习嵌入。

       Struc2Vec:构建层次结构优化相似性,学习嵌入。

       SDNE:多层非线性结构自动编码器优化相似度,学习嵌入。

       代码实现和实验可在GitHub项目中找到。

一文说清楚图注意力神经网络的原理!图注意力神经网络的python实现和注意力熵

       本文将深入解析图注意力神经网络(GRAPH ATTENTIONAL LAYER)的原理,并通过Python编程示例演示其在dgl库中的应用。首先,图注意力机制的核心在于理解节点向量如何依赖其邻居。在图神经网络中,节点向量的表示不仅由自身决定,更与其邻居的向量权重相关联,而GAT正是学习这种权重的机制,通过计算节点的重要性和邻居向量来更新节点表示。

       GAT的实现过程分为三个步骤:首先,对节点的原始特征进行线性变换,生成[公式]维的新特征;其次,通过注意力机制计算注意力系数,这一步采用线性映射和LeakyReLU激活函数,将节点对的向量表示映射为一个权重值;然后,通过softmax标准化注意力系数,以便加权邻居节点向量。具体来说,就是将标准化后的系数作为权重,对邻居节点向量求和后通过sigmoid激活得到节点的新表示。

       为了增加稳定性,GAT引入多头注意力机制,通过多个独立的注意力机制计算结果后取平均。接着,我们来看如何用Python实现GAT,以dgl库为例。例如,网络结构的定义包括维度变换层(fc)和注意力计算层(attn_fc),而edge_attention函数计算边连接的节点注意力系数,reduce_func则进行注意力系数的标准化和加权求和操作。

       为了评估注意力系数的分布,dgl文档中引入了注意力熵这一指标,它反映了注意力的分散程度。在Cora数据集上,GAT与GCN性能相近,而在PPI数据集上,GAT表现出更强的性能,其注意力熵分布与均匀分布差异明显,表明GAT能够更有效地聚焦于关键节点,提高节点表示的准确性。