欢迎来到皮皮网网站!

【双轨线源码】【python 机器学习 源码】【java jdk源码阅读】神经网络的源码_神经网络源代码

时间:2024-12-26 02:31:54 来源:cocos2djs游戏源码

1.Pytorch深入剖析 | 1-torch.nn.Module方法及源码
2.rbf神经网络原理
3.pytorch源码学习03 nn.Module 提纲挈领
4.必知必会的神经VGG网络(含代码)
5.[转]Pytorch LayerNorm源码详解
6.(论文加源码)基于连续卷积神经网络(CNN)(SVM)(MLP)提取脑电微分熵特征的DEAP脑电情绪识别

神经网络的源码_神经网络源代码

Pytorch深入剖析 | 1-torch.nn.Module方法及源码

       torch.nn.Module是神经网络模型的基础类,大部分自定义子模型(如卷积、网络池化或整个网络)均是源代码其子类。torch.nn.Parameter是码神继承自torch.tensor的子类,用以表示可训练参数。经网定义Module时,络源双轨线源码可以使用个内置方法,神经例如add_module用于添加子模块,网络children和named_children用于获取子模块,源代码modules和named_modules用于获取所有模块,码神register_parameter用于注册参数,经网parameters和named_parameters用于获取参数,络源get_parameter用于获取指定参数等。神经Module还支持数据格式转换,网络如float、源代码double、half和bfloat,以及模型的设备移动,如cpu、cuda和xpu。训练模式调整可以通过train和eval方法实现。模型参数的梯度可以使用zero_grad方法清零。

       模型的前向传播由forward方法定义,而apply方法允许应用特定函数到模型的所有操作符上。模型状态可以通过state_dict和load_state_dict方法进行保存和加载,常用于保存模型参数。此外,模型可以设置为训练模式或评估模式,影响特定模块如Dropout和BatchNorm的行为。

       在PyTorch中,hook方法用于在前向和反向传播过程中捕获中间变量。注册hook时,可以使用torch.Tensor.register_hook针对张量注册后向传播函数,torch.nn.Module.register_forward_hook针对前向传播函数,torch.nn.Module.register_forward_pre_hook用于在前向传播之前修改输入张量,以及torch.nn.Module.register_backward_hook用于捕获中间层的梯度输入和输出。

       通过这些方法,开发者可以灵活地调整、监控和优化神经网络模型的行为,从而实现更高效、python 机器学习 源码更精确的模型训练和应用。利用hook方法,用户可以访问中间变量、修改输入或输出,以及提取特征图的梯度,为模型的定制化和深入分析提供了强大的工具。

rbf神经网络原理

       什么是rbf神经网络

       RBF神经网络算法是由三层结构组成,输入层至隐层为非线性的空间变换,一般选用径向基函数的高斯函数进行运算;从隐层至输出层为线性空间变换,即矩阵与矩阵之间的变换。

       rbf神经网络原理是用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。

       RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的,的激励函数是一般是高斯函数和BP的S型函数不一样,高斯函数是通过对输入与函数中心点的距离来算权重的。

       简而言之,RBF神经网络其实就是, 具有不同激活函数和应用方向的前馈网络 。 4Deep Feed Forword(DFF)深度前馈神经网络 4DFF深度前馈神经网络 DFF深度前馈神经网络在年代初期开启了深度学习的潘多拉盒子。

全局逼近和局部逼近神经网络

       1、RBF神经网络算法是由三层结构组成,输入层至隐层为非线性的空间变换,一般选用径向基函数的高斯函数进行运算;从隐层至输出层为线性空间变换,即矩阵与矩阵之间的变换。

       2、BP网络本身的算法容易陷入局部最优而无法自拔,所以现在就有用遗传算法进行优化取得全局最优的的方法。

       3、RBF神经网络使用局部指数衰减的非线性函数(高斯函数就是一种典型的函数)对非线性输入输出映射进行局部逼近。

       4、预测效果较好的一般有:GRNN神经网络、RBF神经网络。局部逼近网络由于只需调整局部权值,因此训练速度较快,拟合精度也较高。java jdk源码阅读Elman神经网络。

       5、rbf神经网络原理是用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。

       6、组合神经网络。取长补短,将全局搜索能力强的算法与局部逼近快的算法组合起来,如遗传算法优化初始权值,再训练。这种方法比较灵活,可以和许多算法融合。全面考虑影响因素。

rbf神经网络在java中如何实现原代码

       1、rbf神经网络原理是用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。

       2、java源代码是用来关联jar中的编译代码的。

       3、编写源代码 首先,在D盘下建立任意建立一个目录(建议是非中文的目录),这里我建立的目录是javacode。然后进入该目录,在该目录下建立一个文件名是:HelloWorld.java的普通文件。 使用文本打开该文件。

IDAS-分散式智能数据采集网络技术特点是什么?

       结构先进、安装方便,该产品高度1U,可以直接安装在标准机柜中,独特的散热技术,1U机箱有多个磁悬浮风扇散热。数据采集冗余设计:支持双机双网冗余通讯。

       其特点是安卓php源码近距离、低复杂度、自组织、低功耗、低数据速率。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。zigbee技术和wifi、蓝牙可以有个对比。注重低功耗、短距离、低速率。

       主要技术特点:同步码分多址技术,智能天线技术和软件无线技术。它采用tdd双工模式,载波带宽为6mhz。tdd是一种优越的双工模式,因为在第三代移动通信中,需要大约mhz的频谱资源,在3ghz以下是很难实现的。

       ZigBee优点 第实际生活的数据信息传输是以ZigBee无线传感技术为通信网络的依靠,可以建立很多网络连接点,同时依靠网络辅助器还可以实时传输数据通讯。

       借智能机器优化统计,剖析多渠道数据 要利用好智能软件,对不同来源的数据做好目标分析。

       灵活。每个结点均有智能,可根据情况决定路由和对数据做必要的处理。迅速。以分组作为传送单位,在每个结点存储转发,网络使用高速链路。可靠。完善的网络协议;分布式多路由的通信子网。

rbf神经网络和bp神经网络有什么区别

       bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的订餐源码单店训练时间可能非常长,这主要是由于学习速率太小造成的。

       用途不同 前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。

       BP神经网络是ANN人工神经中的一种,常用的神经网络有BP、RBF、SOM、Hopfield等等,其功能不经相同,可总体来说ANN的主要功能是模式识别和分类训练。最本质的区别可以说是学习方法不同,或者说模型的优化方法不同。

pytorch源码学习 nn.Module 提纲挈领

       深入理解 PyTorch 的 nn.Module:核心概念与底层逻辑

       掌握核心思想,探索底层逻辑,通过解析 PyTorch 的 nn.Module 来构建深度学习模型。此模块是 PyTorch 的基石,封装了一系列函数和操作,构成计算图,是构建神经网络的首选工具。

       nn.Module 初始化(__init__)

       在定义自定义模块时,__init__ 方法是关键。通过调用 super().setattr 方法,设置 nn.Module 的核心成员变量,如训练状态、参数、缓存等,这决定了模块的主要功能。这些设置包括:

       控制训练/测试状态

       初始化参数集合

       初始化缓存集合

       设置非持久缓存集

       注册前向和反向钩子

       初始化子模块集合

       理解这些设置对于高效初始化模块至关重要,避免了默认属性设置的冗余和潜在的性能影响。

       训练与测试模式(train/val)

       nn.Module 通过 self.training 属性区分训练和测试模式,影响模块在不同状态下的行为。使用 model.train() 和 model.eval() 设置,可使模块在训练或测试时表现不同,如控制 Batch Normalization 和 Dropout 的行为。

       梯度管理

       requires_grad_ 和 zero_grad 函数管理梯度,用于训练和微调模型。requires_grad_ 控制参数是否参与梯度计算,zero_grad 清理梯度,释放内存。正确设置这些函数是训练模型的关键。

       参数转换与转移

       通过调用 nn.Module 提供的函数,如 CPU、type、CUDA 等,可以轻松转换模型参数和缓存到不同数据类型和设备上。这些函数通过 self._apply 实现,确保所有模块和子模块的参数和缓存得到统一处理。

       属性增删改查

       模块属性管理通过 add_module、register_parameter 和 register_buffer 等方法实现。这些方法不仅设置属性,还管理属性的生命周期和可见性。直接设置属性会触发 nn.Module 的 __setattr__ 方法。

       常见属性访问

       nn.Module 提供了方便的访问器,如 parameters、buffers、children 和 modules,用于遍历模块中的参数、缓存、子模块等。这些访问器通过迭代器简化了对模块属性的访问。

       前向过程与钩子

       nn.Module 中的前向过程与钩子管理了模块的执行顺序。forward_pre_hooks、forward_hooks 和 backward_hooks 用于在模块的前向和后向计算阶段触发特定操作,实现如内存管理、中间结果保存等高级功能。

       模型加载与保存

       模型的保存与加载通过 hook 机制实现,确保在不同版本间兼容。使用 state_dict() 和 load_state_dict() 函数实现模型状态的导出和导入,支持模块及其子模块参数的保存与恢复。

       通过深入理解 nn.Module 的设计与实现,可以更高效地构建、优化和管理深度学习模型,实现从概念到应用的无缝过渡。

必知必会的VGG网络(含代码)

       牛津大学的视觉几何组设计的VGGNet,一种经典卷积神经网络架构,曾在年ILSVRC分类任务中获得第二名。现今,VGG依然广泛应用于图像识别、语音识别、机器翻译、机器人等领域。VGG包含层(VGG-)和层(VGG-),结构相似,由个卷积层和3个全连接层组成。与之前网络相比,VGG采用3*3卷积核替代7x7卷积核,2*3卷积核替代5*5卷积核,以减少参数,提升深度。

       VGG-的结构图显示,包含conv(卷积层)、pool(池化层)和最后三个fc(全连接层)。VGG通过减少参数量,使得网络结构更加紧凑,从而提升模型的性能。

       VGG-采用五组卷积与三个全连接层,最后使用Softmax进行分类。每个卷积层的参数量通过公式计算得出。特征图计算公式为输出图像大小(O)等于(输入图像大小(I)+2*填充(P)-卷积核大小(K))/步长(S)+1。

       VGG-的代码实现可以通过构建一个Layer类,通过循环添加每个层的顺序执行来实现。具体代码可在关注公众号CV算法恩仇录后,回复VGG源码获取。

       了解更多关于VGG的细节,请参阅相关链接:《VGG网络细节》 shimo.im/docs/dPkpKKErv...、《VGG网络》 blog.csdn.net/weixin_...

       深入理解VGG,可参考《一文读懂VGG》/s/vWuGW4iMD1MjVDZVCqH_FA。

[转]Pytorch LayerNorm源码详解

       在深度学习框架中,PyTorch的LayerNorm层提供了一种对输入张量进行归一化的手段,适用于卷积神经网络等模型。本文将对LayerNorm的源码进行详细解析,旨在帮助读者深入理解其内部工作原理。

       1. LayerNorm使用介绍

       在PyTorch中,LayerNorm函数的定义遵循数学公式:对输入张量的每个轴进行归一化,使每个轴的平均值为零,方差为1。具体实现时,会为输入张量的每个轴计算出一个权重向量和一个偏置向量,然后对输入进行缩放和偏移操作,以达到归一化的效果。

       2. LayerNorm反向推导公式

       在反向传播过程中,LayerNorm的计算涉及三个梯度:对参数的梯度、输入梯度以及中间变量的梯度。其数学公式如下:首先,计算期望和方差,然后利用这些信息对输入进行调整。在计算梯度时,每个梯度都与输入张量的每个元素相关,但权重和偏置的梯度仅与它们自身相关。

       3. 源码实现

       LayerNorm的前向计算和反向计算分别在PyTorch的源码中定义。前向计算主要涉及输入张量的重塑、权重和偏置的初始化以及层归一化的具体实现。反向计算则基于前向计算的结果,通过多线程并行处理进行优化。

       3.1 前向计算

       在计算前,输入张量首先被转换为一个二维矩阵,以便进行层归一化。接着,初始化权重和偏置向量,并通过一个名为LayerNormKernelImplInternal的函数实现归一化操作。

       3.2 反向计算

       反向计算涉及到对多维矩阵的梯度求取,这可以通过将矩阵分解为多个一维向量来进行。在PyTorch的源码中,反向计算主要通过调用一个名为layer_norm_backward_cpu的函数实现,该函数首先初始化相关张量,然后调用内联函数进行计算。

       4. 参考资料

       本文内容基于对PyTorch源代码的深入分析,参考了PyTorch官方文档以及相关深度学习研究论文。通过解析LayerNorm的源码,读者可以更深入地理解层归一化操作的实现细节,从而在实际项目中进行更有效的利用。

(论文加源码)基于连续卷积神经网络(CNN)(SVM)(MLP)提取脑电微分熵特征的DEAP脑电情绪识别

       在本文中,我们采用连续卷积神经网络(CNN)对DEAP数据集进行脑电情绪识别。主要内容是将脑电信号在频域分段后提取其微分熵特征,构建三维脑电特征输入到CNN中。实验结果表明,该方法在情感识别任务上取得了.%的准确率。

       首先,我们采用5种频率带对脑电信号进行特化处理,然后将其转换为**的格式。接着,我们提取了每个脑电分段的微分熵特征,并对其进行了归一化处理,将数据转换为*N*4*的格式。在这一过程中,我们利用了国际-系统,将一维的DE特征变换为二维平面,再将其堆叠成三维特征输入。

       在构建连续卷积神经网络(CNN)模型时,我们使用了一个包含四个卷积层的网络,每个卷积层后面都添加了一个具有退出操作的全连接层用于特征融合,并在最后使用了softmax层进行分类预测。模型设计时考虑了零填充以防止立方体边缘信息丢失。实验结果表明,这种方法在情感识别任务上表现良好,准确率为.%。

       为了对比,我们还编写了支持向量机(SVM)和多层感知器(MLP)的代码,结果分别为.%和.%的准确率。实验结果表明,连续卷积神经网络模型在DEAP数据集上表现最好。

       总的来说,通过结合不同频率带的信号特征,同时保持通道间的空间信息,我们的三维脑电特征提取方法在连续卷积神经网络模型上的实验结果显示出高效性。与其他相关方法相比,该方法在唤醒和价分类任务上的平均准确率分别达到了.%和.%,取得了最佳效果。

       完整代码和论文资源可以在此获取。

BatchNorm理解(含Pytorch部分源码)

       深度学习中,数据归一化是关键。神经网络学习数据分布以在测试集上达到泛化效果。然而,若每个batch输入数据分布不同,即Covariate Shift,这会带来训练挑战。数据经过多层网络后,分布发生改变,形成Internal Covariate Shift,这进一步增加了下层网络学习的难度。为解决中间层Internal Covariate Shift问题,引入了Batch Normalization(BN)操作。

       BN算法流程如下:

       (1)计算输入批量数据的均值。

       (2)计算输入批量数据的方差。

       (3)对每个数据进行归一化。

       (4)引入缩放变量和平移变量,通过训练更新,计算归一化后的值。

       BN中均值方差计算基于张量数据,通常维度为[N, H, W, C]。其中N为batch_size,H和W为特征图尺寸,C为通道数。均值计算是每个通道内数字总和除以[N, H, W]。例如,对于[2,2,2,3]输入,代表2个batch,每个batch有3个特征图(通道数为3),每个特征图大小为2*2。以通道1为例,计算步骤如下:

       均值计算公式为:均值=(所有数字总和)/ [N, H, W]。

       最终获得三个通道的均值和方差,网络更新参数,为每一个channel对应一个缩放变量和平移变量。

       在Pytorch中,BN通过_NormBase类和_BatchNorm类实现。_NormBase类定义BN相关的属性,_BatchNorm类继承自_NormBase,是BatchNorm2d实际调用的类。具体源码包括定义属性、计算均值和方差、归一化以及参数更新等关键步骤。

更多相关资讯请点击【综合】频道>>>