1.源码分析: Java中锁的多线a多种类与特性详解
2.多线程并发下载文件(附源码)
3.七天杀上GitHub榜首!Java并发编程深度解析实战,程编程源JUC底层原理揭秘
4.Java并发编程解析 | 基于JDK源码解析Java领域中并发锁之StampedLock锁的线程设计思想与实现原理 (三)
5.Java多线程中join、yield、编程sleep方法详解
6.Java教程:dubbo源码解析-网络通信
源码分析: Java中锁的种类与特性详解
在Java中存在多种锁,包括ReentrantLock、多线a多c语言源码解读Synchronized等,程编程源它们根据特性与使用场景可划分为多种类型,线程如乐观锁与悲观锁、编程可重入锁与不可重入锁等。源码本文将结合源码深入分析这些锁的多线a多设计思想与应用场景。
锁存在的程编程源意义在于保护资源,防止多线程访问同步资源时出现预期之外的线程错误。举例来说,编程当张三操作同一张银行卡进行转账,源码如果银行不锁定账户余额,可能会导致两笔转账同时成功,违背用户意图。因此,在多线程环境下,锁机制是必要的。
乐观锁认为访问资源时不会立即加锁,仅在获取失败时重试,通常适用于竞争频率不高的场景。乐观锁可能影响系统性能,故在竞争激烈的场景下不建议使用。Java中的乐观锁实现方式多基于CAS(比较并交换)操作,如AQS的锁、ReentrantLock、CountDownLatch、Semaphore等。CAS类实现不能完全保证线程安全,使用时需注意版本号管理等潜在问题。
悲观锁则始终在访问同步资源前加锁,确保无其他线程干预。获取整个App源码ReentrantLock、Synchronized等都是典型的悲观锁实现。
自旋锁与自适应自旋锁是另一种锁机制。自旋锁在获取锁失败时采用循环等待策略,避免阻塞线程。自适应自旋锁则根据前一次自旋结果动态调整等待时间,提高效率。
无锁、偏向锁、轻量级锁与重量级锁是Synchronized的锁状态,从无锁到重量级锁,锁的竞争程度与性能逐渐增加。Java对象头包含了Mark Word与Klass Pointer,Mark Word存储对象状态信息,而Klass Pointer指向类元数据。
Monitor是实现线程同步的关键,与底层操作系统的Mutex Lock相互依赖。Synchronized通过Monitor实现,其效率在JDK 6前较低,但JDK 6引入了偏向锁与轻量级锁优化性能。
公平锁与非公平锁决定了锁的分配顺序。公平锁遵循申请顺序,非公平锁则允许插队,提高锁获取效率。
可重入锁允许线程在获取锁的同一节点多次获取锁,而不可重入锁不允许。共享锁与独占锁是另一种锁分类,前者允许多个线程共享资源,后者则确保资源的独占性。
本文通过源码分析,详细介绍了Java锁的种类与特性,以及它们在不同场景下的应用。了解这些机制对于多线程编程至关重要。此外,应用加固加密源码还有多种机制如volatile关键字、原子类以及线程安全的集合类等,需要根据具体场景逐步掌握。
多线程并发下载文件(附源码)
RandomAccessFile是一个Java类,支持随机访问文件的读写操作,其文件指针允许访问文件的任意位置,无需从头至尾顺序读写,极大地便利了文件操作。特别适用于网络请求中的多线程文件下载和断点续传。RandomAccessFile包含记录指针,用于标识当前读写位置,当创建对象时,指针位于文件头,通过读/写操作后,指针会后移相应字节数。此外,RandomAccessFile还提供了两个特殊方法移动记录指针,实现随机访问功能。
RandomAccessFile的使用场景广泛,比如多线程下载文件。以下载多兆的文件为例,仅需ms,效率极高。实现基本多线程读写功能的代码提供了一个简单的示例,但仍有许多优化空间,如使用NIO进行读写,对文件读写加锁等。有兴趣的开发者可参考代码并进行改进。
总结,RandomAccessFile因其支持随机访问和高效操作文件的能力,是实现多线程下载和断点续传的理想工具。通过优化代码,如引入NIO技术或对文件操作进行加锁处理,可以进一步提升性能和稳定性。伊利没有溯源码欢迎关注公众号:南山的架构笔记,获取更多技术分享和互联网架构经验。
七天杀上GitHub榜首!Java并发编程深度解析实战,JUC底层原理揭秘
在多核CPU和多线程技术普及的当今,我们面对的不再是多年前对于线程开启时机的问题。如今,无论是开发人员还是技术开发者,都需要深入了解多线程技术的方方面面。本文将从操作系统原理的角度,全面解析多线程技术,涵盖基础知识到高级进阶,分享作者多年的工作经验和踩坑后的教训。
多线程编程技术已经成为现代软件开发不可或缺的部分。然而,对于很多开发者来说,尽管有各种库和运行环境对操作系统多线程接口的封装,他们仍然面对着复杂的多线程逻辑,甚至只是简单调用库的“业务”程序员。本文旨在从基础出发,深入浅出地讲解多线程技术的各个层面。
本文分为章,从Java线程的实践及原理揭秘开始,逐步深入到synchronized实现原理、volatile解决可见性和有序性问题、J.U.C中的重入锁和读写锁、线程通信中的条件等待机制、J.U.C并发工具集实战、并发编程必备工具、阻塞队列设计原理及实现、并发安全集合原理及源码、线程池设计原理、以及Java并发编程中的异步编程特性。每一章节都基于作者的源码整数补零经验总结和踩坑后的教训,为读者提供全面而深入的指导。
如果您对这份手册感兴趣并希望深入学习,欢迎您点赞并关注。获取完整内容的方式非常简单,只需点击下方链接即可。让我们一起探索多线程技术的奥秘,提升编程技能,迈向技术的高峰。
Java并发编程解析 | 基于JDK源码解析Java领域中并发锁之StampedLock锁的设计思想与实现原理 (三)
在并发编程领域,核心问题涉及互斥与同步。互斥允许同一时刻仅一个线程访问共享资源,同步则指线程间通信协作。多线程并发执行历来面临两大挑战。为解决这些,设计原则强调通过消息通信而非内存共享实现进程或线程同步。
本文探讨的关键术语包括Java语法层面实现的锁与JDK层面锁。Java领域并发问题主要通过管程解决。内置锁的粒度较大,不支持特定功能,因此JDK在内部重新设计,引入新特性,实现多种锁。基于JDK层面的锁大致分为4类。
在Java领域,AQS同步器作为多线程并发控制的基石,包含同步状态、等待与条件队列、独占与共享模式等核心要素。JDK并发工具以AQS为基础,实现各种同步机制。
StampedLock(印戳锁)是基于自定义API操作的并发控制工具,改进自读写锁,特别优化读操作效率。印戳锁提供三种锁实现模式,支持分散操作热点与削峰处理。在JDK1.8中,通过队列削峰实现。
印戳锁基本实现包括共享状态变量、等待队列、读锁与写锁核心处理逻辑。读锁视图与写锁视图操作有特定队列处理,读锁实现包含获取、释放方式,写锁实现包含释放方式。基于Lock接口的实现区分读锁与写锁。
印戳锁本质上仍为读写锁,基于自定义封装API操作实现,不同于AQS基础同步器。在Java并发编程领域,多种实现与应用围绕线程安全,根据不同业务场景具体实现。
Java锁实现与运用远不止于此,还包括相位器、交换器及并发容器中的分段锁。在并发编程中,锁作为实现方式之一,提供线程安全,但实际应用中锁仅为单一应用,提供并发编程思想。
本文总结Java领域并发锁设计与实现,重点介绍JDK层面锁与印戳锁。文章观点及理解可能存在不足,欢迎指正。技术研究之路任重道远,希望每一份努力都充满价值,未来依然充满可能。
Java多线程中join、yield、sleep方法详解
在Java多线程编程中,Thread类扮演关键角色。掌握Thread中join、yield、sleep方法,是多线程代码开发的基础。以下总结这3个方法的含义及应用。
sleep方法,静态本地方法,调用底层C库实现睡眠。接收毫秒参数,让当前线程睡眠指定时间。睡眠期间,线程不会释放锁。会抛出InterruptedException异常。示例代码显示,多个运行结果可能不同,但始终一个线程运行完全后另一个开始。
yield方法,向调度器表示愿意让出CPU执行权,但调度器可能忽略此请求。适用于在多个线程间提升相对进度,需结合性能分析和基准测试。使用较少,对调试、测试或并发控制结构设计可能有用。
join方法有3个重载版本。主要关注第二个方法,用于等待目标线程指定时间后消亡。无参数join方法等效于等待目标线程完全结束。源码中通过while循环和isAlive()方法判断,确保线程等待目标线程执行完毕。
以刷抖音为例,假设刷抖音线程运行秒,而睡觉线程运行时间仅为毫秒。通过join方法,睡觉线程需等待刷完抖音后,才能开始执行,展示join方法使等待线程挂起直至目标线程结束的特性。
至此,join、yield、sleep方法的使用理解加深,它们在多线程编程中分别用于线程睡眠、让出CPU执行权和等待其他线程结束,是实现并发控制和优化的关键。
Java教程:dubbo源码解析-网络通信
在之前的内容中,我们探讨了消费者端服务发现与提供者端服务暴露的相关内容,同时了解到消费者端通过内置的负载均衡算法获取合适的调用invoker进行远程调用。接下来,我们聚焦于远程调用过程,即网络通信的细节。
网络通信位于Remoting模块中,支持多种通信协议,包括但不限于:dubbo协议、rmi协议、hessian协议、ty进行网络通讯,NettyClient.doOpen()方法中可以看到Netty的相关类。序列化接口包括但不限于:Serialization接口、Hessian2Serialization接口、Kryo接口、FST接口等。
序列化方式如Kryo和FST,性能往往优于hessian2,能够显著提高序列化性能。这些高效Java序列化方式的引入,可以优化Dubbo的序列化过程。
在配置Dubbo RPC时,引入Kryo和FST非常简单,只需在RPC的XML配置中添加相应的属性即可。
关于服务消费方发送请求,Dubbo框架定义了私有的RPC协议,消息头和消息体分别用于存储元信息和具体调用消息。消息头包括魔数、数据包类型、消息体长度等。消息体包含调用消息,如方法名称、参数列表等。请求编码和解码过程涉及编解码器的使用,编码过程包括消息头的写入、序列化数据的存储以及长度的写入。解码过程则涉及消息头的读取、序列化数据的解析以及调用方法名、参数等信息的提取。
提供方接收请求后,服务调用过程包含请求解码、调用服务以及返回结果。解码过程在NettyHandler中完成,通过ChannelEventRunnable和DecodeHandler进一步处理请求。服务调用完成后,通过Invoker的invoke方法调用服务逻辑。响应数据的编码与请求数据编码过程类似,涉及数据包的构造与发送。
服务消费方接收调用结果后,首先进行响应数据解码,获得Response对象,并传递给下一个处理器NettyHandler。处理后,响应数据被派发到线程池中,此过程与服务提供方接收请求的过程类似。
在异步通信场景中,Dubbo在通信层面为异步操作,通信线程不会等待结果返回。默认情况下,RPC调用被视为同步操作。Dubbo通过CompletableFuture实现了异步转同步操作,通过设置异步返回结果并使用CompletableFuture的get()方法等待完成。
对于异步多线程数据一致性问题,Dubbo使用编号将响应对象与Future对象关联,确保每个响应对象被正确传递到相应的Future对象。通过在创建Future时传入Request对象,可以获取调用编号并建立映射关系。线程池中的线程根据Response对象中的调用编号找到对应的Future对象,将响应结果设置到Future对象中,供用户线程获取。
为了检测Client端与Server端的连通性,Dubbo采用双向心跳机制。HeaderExchangeClient初始化时,开启两个定时任务:发送心跳请求和处理重连与断连。心跳检测定时任务HeartbeatTimerTask确保连接空闲时向对端发送心跳包,而ReconnectTimerTask则负责检测连接状态,当判定为超时后,客户端选择重连,服务端采取断开连接的措施。