xilinx Դ?源码?
在FPGA设计领域,Xilinx系列的源码FPGA被用于实现4K视频的高效缩放,其核心是源码基于Video Processing Subsystem。这个系统提供了4套针对不同FPGA型号的源码工程源码和全面的技术支持,让你能够在Xilinx的源码Kintex7和Zynq UltraScale+系列FPGA上轻松实现这一功能。
首先,源码让我们了解一下方案概述。源码方案的源码核心是手写彩条视频,分辨率x,源码以Hz或Hz的双像素输出,通过AXI4-Stream接口。数据经过AXI4-Stream Data FIFO进行跨时钟域处理,然后通过Video Processing Subsystem进行4K视频的缩放,将x的视频扩展至x。这部分工作由官方提供的IP核负责,确保了视频处理的准确性和兼容性,但仅限于Xilinx自家FPGA平台。
针对市面上常见的FPGA,我们提供了四套移植后的完整工程,分别针对Xilinx Kintex7和Zynq UltraScale+,以及Hz和Hz的视频输入。每套代码都包含详细的配置和软核配置,如MicroBlaze或Zynq,以适应不同硬件环境。
设计包括了从视频输入到输出的完整流程,包括HDMI 1.4/2.0 Transmitter Subsystem的视频编码和Video PHY Controller的串行化处理,以及均衡电路和视频输出显示。为了方便应用,我们推荐使用博主的配套开发板,或根据自己的硬件进行适配。
工程源码由Vivado Block Design和Vitis SDK软件设计组成,提供了清晰的架构和详细的操作指南。无论是Kintex7还是Zynq UltraScale+的版本,代码都经过精心优化,以最小化资源占用和功耗。
如果你对工程源码感兴趣,可以直接联系博主获取,包括网盘链接和个性化定制服务。请注意,所有代码仅限学习和研究使用,禁止商业用途,并且可能需要根据你的硬件环境进行微调。
FPGA高端项目:SDI 视频+音频编解码,提供工程源码和技术支持
FPGA高端项目:SDI 视频+音频编解码,提供工程源码和技术支持
本文详述了一款使用Xilinx 7系列Kintex7--xc7ktffg-2型号FPGA实现的3G-SDI视频+音频编解码方案,涵盖了编码、音频解码及视频解码过程,并提供了完整的工程源码及技术支持。该设计适用于需要处理SDI视频与音频的项目,如医疗、军工领域或图像处理等高速接口相关应用。
设计分为三部分:3G-SDI视频编码、3G-SDI音频解码和3G-SDI视频解码,整合为一个工程,包括视频发送和视频+音频接收功能。AI相面源码在视频接收阶段,首先通过GVA芯片进行均衡EQ处理,随后使用Xilinx官方GTX原语进行串并转换,调用SMPTE SD/HD/3G-SDI IP核实现解码。音频解码则采用UHD-SDI Audio IP核,最后将音频数据转换为i2s格式并输出到扬声器。视频发送部分,使用静态彩条作为源数据,通过SMPTE SD/HD/3G-SDI IP核编码,并由GTX进行串化,GV芯片增强驱动,最终通过SDI转HDMI盒子显示。
设计参考了Xilinx官方文档,确保了在不同输入状态下的线速率切换,确保了GTX的稳定运行。IP配置简洁明了,支持SD-SDI、HD-SDI和3G-SDI的编解码。音频解码后输出至i2s模块,再通过TLVAIC芯片播放SDI音频。视频发送通过静态彩条生成,经过编码、串化及驱动增强后,通过SDI接口输出至显示器。
该设计在Vivado.2版本下实现,提供了一套完整的工程源码,供用户移植及开发使用。同时,作者还提供了相关的GT高速接口解决方案,包括基于A7系列FPGA的GTP方案、K7或ZYNQ系列FPGA的GTX方案、KU或V7系列FPGA的GTH方案及KU+系列FPGA的GTY方案。
为了帮助用户更好地理解和应用该设计,作者在文章末尾提供了获取完整工程源码及技术支持的方式。请注意,由于代码文件较大,无法通过邮箱发送,而是采用百度网盘链接方式提供下载。请耐心阅读至文章结尾,按照指引获取资源。
特别提醒:本工程及其源码仅供个人学习和研究使用,禁止用于商业用途。如在使用过程中遇到问题或有任何疑问,请随时联系博主或关注官方渠道,获取技术支持。本设计及源码包含了作者和网络资源的贡献,若有冒犯之处,请私信博主批评指正。
Zynq GTX全网最细讲解,aurora 8b/b协议,OV板对板视频传输,提供2套工程源码和技术支持
没玩过GT资源都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。
GT资源是Xilinx系列FPGA的重要卖点,也是做高速接口的基础,不管是PCIE、SATA、MAC等,都需要用到GT资源来做数据高速串化和解串处理,汽修店源码Xilinx不同的FPGA系列拥有不同的GT资源类型,低端的A7由GTP,K7有GTX,V7有GTH,更高端的U+系列还有GTY等,他们的速度越来越高,应用场景也越来越高端。
本文使用Xilinx的Zynq FPGA的GTX资源做板对板的视频传输实验,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,默认使用ov作为视频源,调用GTX IP核,用verilog编写视频数据的编解码模块和数据对齐模块,使用2块开发板硬件上的2个SFP光口实现数据的收发;本博客提供2套vivado工程源码,2套工程的不同点在于一套是GTX发送,另一套是GTX接收;本博客详细描述了FPGA GTX 视频传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后。
免责声明:本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。
我这里已有的 GT 高速接口解决方案:我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建。
GTX 全网最细解读:关于GTX介绍最详细的肯定是Xilinx官方的《ug_7Series_Transceivers》,我们以此来解读;我用到的开发板FPGA型号为Xilinx Kintex7 xc7ktffg-2;带有8路GTX资源,其中2路连接到了2个SFP光口,每通道的收发速度为 Mb/s 到 . Gb/s 之间。GTX收发器支持不同的串行传输接口或协议,比如 PCIE 1.1/2.0 接口、万兆网 XUAI 接口、OC-、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;GTX 基本结构:Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,sqlmapapi源码解析每一个串行高速收发器称为一个 Channel(通道)。GTX 的具体内部逻辑框图:GTX 的发送和接收处理流程:首先用户逻辑数据经过 8B/B 编码后,进入一个发送缓存区(Phase Adjust FIFO),最后经过高速 Serdes 进行并串转换(PISO)。GTX 的参考时钟:GTX 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTX 模块的参考时钟源,用户可以自行选择。
GTX 发送接口:用户只需要关心发送接口的时钟和数据即可,GTX例化模块的这部分接口如下:在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下。GTX 接收接口:用户只需要关心接收接口的时钟和数据即可,GTX例化模块的这部分接口如下:在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下。
GTX IP核调用和使用:有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可。
设计思路框架:本博客提供2套vivado工程源码,2组工程的不同点在于一套是GTX发送,另一套是GTX接收。第1套vivado工程源码:GTX作为发送端,Zynq开发板1采集视频,然后数据组包,通过GTX做8b/b编码后,通过板载的SFP光口的TX端发送出去。视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;默认使用ov作为视频源。第2套vivado工程源码:Zynq开发板2的SFP RX端口接收数据,经过GTX做8b/b解码、数据对齐、数据解包的操作后就得到了有效的视频数据,再用我常用的FDMA方案做视频缓存,最后输出HDMI视频显示。
视频源选择:视频源有两种,分别对应开发者手里有没有摄像头的情况,如果你的手里有摄像头,或者你的开发板有摄像头接口,则使用摄像头作为视频输入源,我这里用到的是廉价的OV摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频,动态彩条是移动的画面,完全可以模拟视频;默认使用ov作为视频源;视频源的选择通过代码顶层的`define COLOR_IN 宏定义进行。
视频源配置及采集:OV摄像头需要i2c配置才能使用,需要将DVP接口的视频数据采集为RGB或者RGB格式的视频数据。选择逻辑如下:当(注释) define COLOR_IN时,输入源视频是动态彩条;当(不注释) define COLOR_IN时,输入源视频是ov摄像头。
视频数据组包:由于视频需要在GTX中通过aurora 8b/b协议收发,所以数据必须进行组包,以适应aurora 8b/b协议标准。视频数据组包模块代码位置如下:首先,我们将bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTX发送;在此之前,需要对一帧视频进行编号,也叫作指令,fcitx源码分析GTX组包时根据固定的指令进行数据发送,GTX解包时根据固定的指令恢复视频的场同步信号和视频有效信号。
GTX aurora 8b/b:这个就是调用GTX做aurora 8b/b协议的数据编解码。数据对齐:由于GT资源的aurora 8b/b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理。视频数据解包:数据解包是数据组包的逆过程。图像缓存:我用到了Zynq开发板,用FDMA取代VDMA具有以下优势:不需要将输入视频转为AXI4-Stream流;节约资源,开发难度低;不需要SDK配置,不要要会嵌入式C,纯FPGA开发者的福音;看得到的源码,不存在黑箱操作问题。
视频输出:视频从FDMA读出后,经过VGA时序模块和HDMI发送模块后输出显示器。
第1套vivado工程详解:开发板FPGA型号:Xilinx--Zynq--xc7zffg-2;开发环境:Vivado.1;输入:ov摄像头或者动态彩条,分辨率x@Hz;输出:开发板1的SFP光口的TX接口;应用:GTX板对板视频传输;工程Block Design如下:工程代码架构如下:综合编译完成后的FPGA资源消耗和功耗预估如下。
第2套vivado工程详解:开发板FPGA型号:Xilinx--Zynq--xc7zffg-2;开发环境:Vivado.1;输入:开发板2的SFP光口的RX接口;输出:开发板2的HDMI输出接口,分辨率为X@Hz;应用:GTX板对板视频传输;工程Block Design如下:工程代码架构如下:综合编译完成后的FPGA资源消耗和功耗预估如下。
上板调试验证光纤连接:两块板子的光纤接法如下。静态演示:下面以第1组vivado工程的两块板子为例展示输出效果。当GTX运行4G线速率时输出如下。
福利:工程代码的获取:代码太大,无法邮箱发送,以某度网盘链接方式发送,资料获取方式:私。网盘资料如下:
Xilinx系列FPGA实现4K视频拼接,基于Video Mixer实现,提供1套工程源码和技术支持
Xilinx系列FPGA实现4K视频拼接,基于Video Mixer实现,提供1套工程源码和技术支持
实现4K视频拼接的方案主要有两种:一种是纯Verilog方案,但这种方案难以实现4K分辨率;另一种是使用Xilinx的HLS方案,该方案简单易实现,但仅适用于Xilinx自家的FPGA。
本文采用Xilinx官方推出的Video Mixer IP核实现4K视频拼接。该方案使用4路Xilinx官方的Video Test Pattem Generator IP核生成分辨率为x@Hz的彩条视频,并通过AXI4-Stream接口输出。彩条视频的形状各不相同,分别为竖条、交叉网格、棋盘和格子形状。视频通过Xilinx官方的XDMA写入FPGA板载DDR4缓存,再由Video Mixer从DDR4中读出并进行拼接处理,拼接方式为4分屏显示。拼接后的视频通过HDMI 1.4/2.0 Transmitter Subsystem IP核编码后输出,同时,系统还提供了AXI4-Stream流和DDC控制信号。
设计中使用的Video Mixer IP核支持最大分辨率为8K,并最多可拼接路视频,输入和输出视频格式均为AXI4-Stream。该IP核通过AXI_Lite接口进行寄存器配置,并提供自定义配置API。相比于自写的HLS视频拼接方案,官方的Video Mixer IP核在逻辑资源占用上大约减少%,且效率更高。
本文还提供了详细的工程设计框图,包括TPG测试彩条、VDMA图像缓存、Video Mixer、HDMI 1.4/2.0 Transmitter Subsystem、Video PHY Controller以及输出均衡电路等模块的配置和功能描述。同时,还推荐了几款适合该工程的FPGA开发板,并提供了两种不同的工程源码架构。对于不同需求的读者,本文还提供了一定程度的移植说明,以及工程代码获取方式。
此外,本文还列出了实现4K视频拼接所必需的硬件设备,并提供了输出效果的静态和动态演示。对于有需求的读者,本文还提供了一种获取工程代码的方式。
总之,本文提供了一种基于Xilinx系列FPGA的4K视频拼接实现方案,包括设计原理、关键模块功能、工程源码架构、移植说明以及获取代码的方式,旨在帮助读者掌握4K视频拼接的设计能力,以便能够根据自己的项目需求进行移植和设计。
FPGA高端项目:Xilinx Zynq系列FPGA 多路视频缩放拼接 工程解决方案 提供4套工程源码+技术支持
探索FPGA高端技术:Xilinx Zynq系列视频拼接与缩放的工程解决方案一、创新技术应用
基于Zynq的Xilinx FPGA,我们的解决方案实现了多路视频的高精度缩放(双线性插值),并以智能FDMA技术进行无缝拼接,完美兼容OV摄像头,支持动态彩条作为输入源。处理后的视频经精心优化,通过VGA和HDMI输出不同分辨率的实时显示。二、全面工程源码
路视频:2路x缩放拼接,x输入,双屏显示
路视频:4路x缩放,x输入,四屏显示
路视频:8路x缩放,x输入,八屏显示
路视频:路x缩放,x输入,十六屏显示
三、适用领域广泛
无论是在校学生、研究型工程师还是行业专业人士,这套方案适用于医疗、军事等领域的高速接口或图像处理任务,让你在实践中提升技能。四、技术与支持
提供完整源码,包含最新动态彩条选项
优化FDMA性能,提升低端FPGA性能
改进HDMI输出,清晰易读
升级输出时序,确保无缝显示
五、学习旅程
通过结构优化,降低学习难度,代码量减少%
强调逻辑思维,自主学习verilog和Vivado工具
源码理解和工程实践相结合
从基础复现开始,逐步深入
六、实战培训
套视频缩放纯verilog源码,提升就业竞争力
提供Vivado环境配置教程
每周进度检查,个性化指导
代码移植与验证服务
七、重要提示
仅供个人学习研究,商业使用需遵守条款
多种视频处理方案,支持不同摄像头和接口
Kintex7和Artix7系列FPGA移植教程
4套Vivado源码,灵活调整视频源
八、深入解析
视频缓存采用异步FIFO和RAM阵列,可通过宏定义调整参数,如输入分辨率、通道数等。结语:实战提升
设置缩放参数,探索拼接原理
硬件配置要点,包括摄像头地址计算
从视频拼接到输出模块,全程示例
通过这个精心设计的项目,你将掌握视频缩放与拼接的核心技术,为你的项目设计和移植打下坚实基础。立即获取源码,开始你的FPGA技术探索之旅吧!FPGA解码MIPI视频 OV 2line CSI2 P分辨率采集 提供工程源码和技术支持
前言
探索FPGA解码技术,尤其是涉及MIPI视频协议的复杂性,已成为当代技术挑战之一。Xilinx官方为了帮助开发者克服这一难题,提供了专用的IP核。本文将分享基于Xilinx Kintex7开发板的OV摄像头P视频采集方法,详细描述了设计方案、工程源码及技术支持。适合学生毕业设计、研究生项目开发,以及在职工程师的项目需求。完整工程源码和技术支持将提供给读者,无需过多关注MIPI协议细节。
Xilinx官方推荐的MIPI解码方案
为了简化MIPI协议的使用,Xilinx提供了专用的IP核。这些IP核易于集成,支持Vivado SDK配置,从而简化了MIPI解码过程。然而,对于使用非Xilinx FPGA的开发者,这一方案可能不可行。欲了解更多信息,请参阅先前的文章。
本MIPI CSI2模块的优势
本方案采用VHDL代码实现,具有高学习性和阅读性,且移植性良好。解码性能优越,支持VGA时序,方便后续处理。算法和实用性达到天花板水平,面向实用工程,直接适用于医疗、军工等领域。模块支持4K分辨率解码,并采用VHDL确保时序收敛,优化了内部复杂性。自定义IP封装支持Xilinx系列FPGA,且兼容2线或4线输入。
现有MIPI编解码方案
本文作者已开发出丰富的基于FPGA的MIPI编解码方案,涵盖纯VHDL实现的MIPI解码、Xilinx官方IP解码、不同分辨率(包括4K和P)以及不同FPGA平台(Xilinx、Altera、Lattice)的解决方案。后续将扩展至更多国产FPGA方案,致力于实现FPGA MIPI编解码方案的普及。
详细设计方案
设计采用OV摄像头输入,通过MIPI 2线接口,输出P分辨率视频。纯VHDL编写的CSI-2解码器支持2线或4线输入,输出AXIS数据流,转换为VGA格式的RGB视频。使用经典的FDMA图像缓存架构,经过VGA时序发生器VTC和HDMI发送驱动,最终在显示器上输出P分辨率的视频。
vivado工程介绍
本工程基于Xilinx Kintex7开发板,利用Vivado.2进行开发。输入为OV摄像头提供的MIPI 2线P视频,输出为HDMI接口的P分辨率视频。详细设计包括MIPI解码器的IP搭建、CSI-2配置界面、AXIS到VGA转换、FDMA缓存架构、VGA时序发生器和HDMI发送驱动。
上板调试验证
调试过程中,因摄像头损坏,未能进行现场演示。验证过程包含对设计的综合、验证和性能评估。
获取工程代码
完整工程源码及技术支持将通过网盘链接提供给读者。代码过大,无法通过邮件发送,读者可通过链接获取。
Xilinx Zynq-系列FPGA多路视频处理:图像缩放+视频拼接显示,提供工程源码和技术支持
本文介绍如何利用Xilinx Zynq-系列FPGA Zynq进行多路视频处理,包括图像缩放和视频拼接显示。首先,通过CSDN大佬的经验,我们利用OV摄像头模组作为输入,配置其为x@Hz分辨率。接着,通过Zynq的软核i2c控制器配置摄像头,采集视频并将其转换为RGB格式。自定义IP负责图像缩放,通过SDK软件配置任意尺寸缩放,实质上是AXI_Lite寄存器配置。VDMA IP实现视频到DDR3的帧缓存,Video Mixer IP则进行视频拼接,支持不同位置显示,同样通过SDK配置。最后,通过HDMI发送IP将RGB视频转换为TMDS信号,显示在显示器上。
提供了vivado.1版本的完整工程源码和技术支持,可以实现三种不同的缩放拼接方案,只需修改SDK软件即可调整。设计思路详细描述了各个IP的使用和配置,包括HLS图像缩放IP的最大分辨率、输入输出格式,以及Video Mixer IP的视频处理能力。工程适用于在校学生和在职工程师的项目开发,特别适合于医疗、军工等领域。
代码获取方式位于文章末尾,但请注意,该工程源码包含部分网络公开资源,仅限个人学习研究,禁止商业使用,且需注意FPGA和嵌入式C语言的基础知识要求。此外,文章还提供了相关FPGA图像处理方案的链接,包括图像缩放、视频拼接等不同功能的方案。
FPGA使用MIG调用SODIMM内存条接口教程,提供vivado工程源码和技术支持
在FPGA应用中,数据缓存扮演着至关重要的角色,尤其在图像处理、AD采集及PCIe等领域。通常,FPGA会配备SDRAM、DDR3或DDR4等内存颗粒作为缓存资源,但有时受限于I/O端口或FPGA型号,可能需要额外设计SODIMM适配器以满足更高数据缓存需求。本文将介绍使用Xilinx V7 FPGA开发板NetFPGA-SUME平台实现SODIMM内存条接口的详细教程,并提供完整的vivado工程源码和技术支持,适用于学生、研究项目及在职工程师的学习与实践。
实验板载有2个SODIMM接口,可插入内存条作为缓存,支持在FPGA开发板上进行视频缓存、处理和显示的测试。本例程使用HDMI输入视频或内部生成的彩条视频作为数据源,将视频缓存到SODIMM内存条中,进行三帧缓存后再输出至HDMI端口显示。成功或失败可通过输出图像质量直观判断,进而验证FPGA与SODIMM内存条的读写功能。
本文提供了完整的工程源码和使用指南,旨在帮助读者快速掌握FPGA使用SODIMM内存条接口的实现方法,并支持项目移植。内容涵盖从设计思路、硬件接口、内存配置到VGA时序生成的详细步骤,适用于医疗、军工等高速接口或图像处理领域的专业应用。
请阅读至文章末尾以获取完整工程源码和技术支持的获取方式。请注意,本工程源码的使用仅限于个人学习和研究,禁止用于商业目的。若在使用过程中遇到问题或有建议,欢迎通过私信进行交流。
为了确保本教程的实用性与合法性,部分源码和资源可能通过网络渠道获取,包括CSDN、Xilinx官网、Altera官网等。若在使用过程中发现任何侵权行为,请私信博主予以纠正。本教程及其相关资源仅供个人学习使用,博主不承担任何因个人使用导致的法律责任。
在设计过程中,首先介绍了SODIMM内存条的基本信息及特点,与现代主板相比,它在紧凑性和灵活性上具有一定优势。接下来,设计思路包括了视频输入、缓存、SODIMM内存条配置、VGA时序生成及视频输出等关键步骤。
视频输入部分,利用FMC接口接入HDMI输入或动态彩条视频源,其中HDMI输入通过silcom芯片解码,动态彩条视频则作为模拟输入源。视频缓存采用FDMA控制器实现,适用于各种类型数据的读写操作。MIG配置调用SODIMM内存条的关键在于正确配置内存参数以适应特定的内存条类型。
VGA时序驱动的实现确保了视频流的正确输出,通过Verilog源码提供支持,可灵活调整分辨率。最后,视频输出通过HDMI接口实现,利用silcom芯片进行编码,完成从FPGA到显示设备的视频传输。
本教程详细解析了从硬件配置到软件实现的全过程,包括Vivado工程的设置、综合编译结果分析及上板调试验证。通过实际案例,展示了如何在FPGA开发板上利用SODIMM内存条进行数据缓存和处理。
为了确保读者能够轻松获取到工程源码,提供了链接方式获取完整资源,确保学习者能够直接实践和应用教程内容。请注意遵守资源获取的规则,仅用于个人学习与研究目的。
xilinx MIPI csi2 Rx FPGA verilog源码与架构分析
xilinx MIPI csi2 Rx subsystem verilog源码涉及FPGA MIPI开发设计,其根据MIPI CSI-2标准v2.0实现,从MIPI CSI-2相机传感器捕获图像,输出AXI4-Stream视频数据,支持快速选择顶层参数与自动化大部分底层参数化。底层架构基于MIPI D-PHY标准v2.0,AXI4-Stream视频接口允许与其他子系统无缝连接。
xilinx MIPI csi2 Rx子系统特点包括:
1. **高效图像捕获**:快速从MIPI CSI-2相机传感器获取图像数据。
2. **AXI4-Stream输出**:输出的视频数据通过AXI4-Stream接口,适合与其他基于该接口的子系统对接。
3. **参数配置自动化**:允许快速选择顶层参数,简化底层配置工作。
4. **模块化设计**:便于与其他FPGA设计集成,提高系统灵活性。
架构分析涵盖:
- **rx_ctl_line_buffer**:用于处理数据流,缓冲并控制数据传输。
- **rx_phy_deskew**:去偏斜处理,确保数据传输的准确性。
- **IP核参数配置**:提供定制参数设置,以满足不同应用需求。
此源码为开发人员提供了一个实现MIPI csi2 Rx功能的强大基础,通过详细的代码解析,可以深入理解其工作原理与优化空间。在社区中,开发者可以共享代码、讨论技术细节,促进MIPI csi2 Rx技术的交流与应用。
参考资料与资源:
- <a href="wwp.lanzoue.com/iTnrE1y...:mipi_csi2_ctrl verilog源码
- <a href="wwp.lanzoue.com/iyxll1y...:mipi dphy verilog源码
欢迎加入社区,共同探讨与解决开发过程中的问题,促进MIPI csi2 Rx技术的应用与发展。
2025-01-14 05:08
2025-01-14 04:57
2025-01-14 03:54
2025-01-14 03:49
2025-01-14 03:45