欢迎来到皮皮网官网

【开源python源码下载】【功夫英雄游戏源码】【chart gpt网页源码】了解flink源码的作用_flink源码解读

时间:2024-11-15 01:36:52 来源:小程序源码单词

1.FLINK 部署(阿里云)、解f解读监控 和 源码案例
2.Flink Collector Output 接口源码解析
3.Flink源码编译
4.Flink深入浅出:JDBC Connector源码分析
5.Flink mysql-cdc connector 源码解析
6.十二、源码用f源码flink源码解析-创建和启动TaskManager二

了解flink源码的作用_flink源码解读

FLINK 部署(阿里云)、监控 和 源码案例

       FLINK部署、源码用f源码监控与源码实例详解

       在实际部署FLINK至阿里云时,解f解读POM.xml配置是源码用f源码开源python源码下载一个关键步骤。为了减小生产环境的解f解读包体积并提高效率,我们通常选择将某些依赖项设置为provided,源码用f源码确保在生产环境中这些jar包已预先存在。解f解读而在本地开发环境中,源码用f源码这些依赖需要被包含以支持测试。解f解读

       核心代码示例中,源码用f源码数据流API的解f解读运用尤其引人注目。通过Flink,源码用f源码我们实现了从Kafka到Hologres的解f解读高效数据流转。具体步骤如下:

Kafka配置:首先,确保Kafka作为数据源的配置正确无误,包括连接参数、主题等,这是整个流程的开端。

Flink处理:Flink的数据流API在此处发挥威力,它可以实时处理Kafka中的数据,执行各种复杂的数据处理操作。

目标存储:数据处理完成后,Flink将结果无缝地发送到Hologres,作为最终的数据存储和分析目的地。

Flink Collector Output 接口源码解析

       Flink Collector Output 接口源码解析

       Flink中的Collector接口和其扩展Output接口在数据传递中起关键作用。Output接口增加了Watermark功能,是数据传输的基石。本文将深入解析collect方法及相关重要实现类,帮助理解数据传递的逻辑和场景划分。

       Collector和Output接口

       Collector接口有2个核心方法,Output接口则增加了4个功能,WatermarkGaugeExposingOutput接口则专注于显示Watermark值。主要关注collect方法,它是功夫英雄游戏源码数据发送的核心操作,Flink中有多个Output实现类,针对不同场景如数据传递、Metrics统计、广播和时间戳处理。

       Output实现类分类

       Output类可以归类为:同一operatorChain内的数据传递(如ChainingOutput和CopyingChainingOutput)、跨operatorChain间(RecordWriterOutput)、统计Metrics(CountingOutput)、广播(BroadcastingOutputCollector)和时间戳处理(TimestampedCollector)。

       示例应用与调用链路

       通过一个示例,我们了解了Kafka Source与Map算子之间的数据传递使用ChainingOutput,而Map到Process之间的传递则用RecordWriterOutput。在不同Output的选择中,objectReuse配置起着决定性作用,影响性能和安全性。

       总结来说,ChainingOutput用于operatorChain内部,RecordWriterOutput处理跨chain,CountingOutput负责Metrics,BroadcastingOutputCollector用于广播,TimestampedCollector则用于设置时间戳。开启objectReuse会影响选择的Output类型。

       阅读推荐

       Flink任务实时监控

       Flink on yarn日志收集

       Kafka Connector更新

       自定义Kafka反序列化

       SQL JSON Format源码解析

       Yarn远程调试源码

       State Processor API状态操作

       侧流输出源码

       Broadcast流状态源码解析

       Flink启动流程分析

       Print SQL Connector取样功能

Flink源码编译

       1. 下载Flink稳定版1..2,可以从官方下载链接获取,将源码同步至远程机器,使用Jetbrains Gateway打开。

       2. 以Jetbrains Gateway打开源码,源码目录存放于远程机器,它会自动解析为Maven项目。

       3. 注意事项:在flink-runtime-web/pom.xml文件中,需将部分内容替换,具体如下:

       确保先安装npm,通过命令`yum install npm`。否则编译过程中可能会出现错误。

       为了编译时内存充足,需要调整Maven设置,chart gpt网页源码增加JDK可用内存。在命令行中,可以在/etc/profile中配置,或在Maven配置中指定更大的内存。

       编译命令如下,对于Jetbrains Gateway,需在Run Configurations中新增配置,调整执行参数以执行mvn install或mvn clean。

       编译完成后,每个模块目标文件夹会生成相应的文件。

       4. 接下来进行运行。首先启动JobManager,查看flink-runtime下的StandaloneSessionClusterEntrypoint类,配置文件目录需指定,如`--configDir configpath`,并配置日志参数。

       主类缺失时,需在IDEA的项目结构模块中给flink-runtime添加依赖,从flink-dist/target目录下添加jar包。

       修改配置文件,将允许访问的IP设置为0.0.0.0,以便外部访问。然后映射web端口,启动JobManager后可通过外部IP访问。

       运行TaskManager的参数与JobManager类似,启动后自动注册到JobManager,外部访问验证成功。

       源码编译与启动完成后,其他机器无需重复编译,只需在相应环境中执行预编译的可执行文件,即可实现分布式环境的Flink使用。

Flink深入浅出:JDBC Connector源码分析

       大数据开发中,数据分析与报表制作是日常工作中最常遇到的任务。通常,我们通过读取Hive数据来进行计算,uniapp任务源码项目并将结果保存到数据库中,然后通过前端读取数据库来进行报表展示。然而,使用FlinkSQL可以简化这一过程,通过一个SQL语句即可完成整个ETL流程。

       在Flink中,读取Hive数据并将数据写入数据库是常见的需求。本文将重点讲解数据如何写入数据库的过程,包括刷写数据库的机制和原理。

       以下是本文将讲解的几个部分,以解答在使用过程中可能产生的疑问:

       1. 表的定义

       2. 定义的表如何找到具体的实现类(如何自定义第三方sink)

       3. 写入数据的机制原理

       (本篇基于1..0源码整理而成)

       1. 表的定义

       Flink官网提供了SQL中定义表的示例,以下以oracle为例:

       定义好这样的表后,就可以使用insert into student执行插入操作了。接下来,我们将探讨其中的技术细节。

       2. 如何找到实现类

       实际上,这一过程涉及到之前分享过的SPI(服务提供者接口),即DriverManager去寻找Driver的过程。在Flink SQL执行时,会通过translate方法将SQL语句转换为对应的Operation,例如insert into xxx中的xxx会转换为CatalogSinkModifyOperation。这个操作会获取表的信息,从而得到Table对象。如果这个Table对象是CatalogTable,则会进入TableFactoryService.find()方法找到对应的实现类。

       寻找实现类的过程就是SPI的过程。即通过查找路径下所有TableFactory.class的实现类,加载到内存中。这个SPI的定义位于resources下面的META-INFO下,定义接口以及实现类。

       加载到内存后,首先判断是否是TableFactory的实现类,然后检查必要的参数是否满足(如果不满足会抛出异常,很多人在第一次使用Flink SQL注册表时,都会遇到NoMatchingTableFactoryException异常,同花顺分时概念源码其实都是因为配置的属性不全或者Jar报不满足找不到对应的TableFactory实现类造成的)。

       找到对应的实现类后,调用对应的createTableSink方法就能创建具体的实现类了。

       3. 工厂模式+创建者模式,创建TableSink

       JDBCTableSourceSinkFactory是JDBC表的具体实现工厂,它实现了stream的sinkfactory。在1..0版本中,它不能在batch模式下使用,但在1.版本中据说会支持。这个类使用了经典的工厂模式,其中createStreamTableSink负责创建真正的Table,基于创建者模式构建JDBCUpsertTableSink。

       创建出TableSink之后,就可以使用Flink API,基于DataStream创建一个Sink,并配置对应的并行度。

       4. 消费数据写入数据库

       在消费数据的过程中,底层基于PreparedStatement进行批量提交。需要注意的是提交的时机和机制。

       控制刷写触发的最大数量 'connector.write.flush.max-rows' = ''

       控制定时刷写的时间 'connector.write.flush.interval' = '2s'

       这两个条件先到先触发,这两个参数都是可以通过with()属性配置的。

       JDBCUpsertFunction很简单,主要的工作是包装对应的Format,执行它的open和invoke方法。其中open负责开启连接,invoke方法负责消费每条数据提交。

       接下来,我们来看看关键的format.open()方法:

       接下来就是消费数据,执行提交了

       AppendWriter很简单,只是对PreparedStatement的封装而已

       5. 总结

       通过研究代码,我们应该了解了以下关键问题:

       1. JDBC Sink执行的机制,比如依赖哪些包?(flink-jdbc.jar,这个包提供了JDBCTableSinkFactory的实现)

       2. 如何找到对应的实现?基于SPI服务发现,扫描接口实现类,通过属性过滤,最终确定对应的实现类。

       3. 底层如何提交记录?目前只支持append模式,底层基于PreparedStatement的addbatch+executeBatch批量提交

       4. 数据写入数据库的时机和机制?一方面定时任务定时刷新,另一方面数量超过限制也会触发刷新。

       更多Flink内容参考:

Flink mysql-cdc connector 源码解析

       Flink 1. 引入了 CDC功能,用于实时同步数据库变更。Flink CDC Connectors 提供了一组源连接器,支持从MySQL和PostgreSQL直接获取增量数据,如Debezium引擎通过日志抽取实现。以下是Flink CDC源码解析的关键部分:

       首先,MySQLTableSourceFactory是实现的核心,它通过DynamicTableSourceFactory接口构建MySQLTableSource对象,获取数据库和表的信息。MySQLTableSource的getScanRuntimeProvider方法负责创建用于读取数据的运行实例,包括DeserializationSchema转换源记录为Flink的RowData类型,并处理update操作时的前后数据。

       DebeziumSourceFunction是底层实现,继承了RichSourceFunction和checkpoint接口,确保了Exactly Once语义。open方法初始化单线程线程池以进行单线程读取,run方法中配置DebeziumEngine并监控任务状态。值得注意的是,目前只关注insert, update, delete操作,表结构变更暂不被捕捉。

       为了深入了解Flink SQL如何处理列转行、与HiveCatalog的结合、JSON数据解析、DDL属性动态修改以及WindowAssigner源码,可以查阅文章。你的支持是我写作的动力,如果文章对你有帮助,请给予点赞和关注。

       本文由文章同步助手协助完成。

十二、flink源码解析-创建和启动TaskManager二

       深入探讨Flink源码中创建与启动TaskManager的过程,我们首先聚焦于内部启动onStart阶段。此阶段核心在于启动TaskExecutorServices服务,具体步骤包括与ResourceManager的连接、注册和资源分配。

       当TaskExecutor启动时,首先生成新的注册并创建未完成的future,随后等待注册成功并执行注册操作。这一过程由步骤1至步骤5组成,确保注册与资源连接的无缝集成。一旦注册成功,资源管理器会发送SlotReport报告至TaskExecutor,然后分配slot。

       TaskSlotTable开始分配slot,JobTable获取并提供slot至JobManager。这一流程确保资源的有效分配与任务的高效执行。与此同时,ResourceManager侧的TaskExecutor注册流程同样重要,包括连接与注册TaskExecutor。

       一旦完成注册与资源分配,ResourceManager会发送SlotReport报告至JobMaster,提供slot以供调度任务。这一步骤标志着slot的分配与JobManager的准备工作就绪,为后续任务部署打下基础。

       在ResourceManager侧,slot管理组件注册新的taskManager,根据规则更新slot状态、释放资源或继续执行注册。这一过程确保资源的高效管理与任务的顺利进行。

       在JobMaster侧,slot的分配与管理通过slotPool进行,确保待调度任务能够得到所需资源。这一阶段标志着任务调度与执行的准备就绪。

       流程的最后,回顾整个创建与启动TaskManager的过程,从资源连接与注册到slot分配与任务调度,各个环节紧密相连,确保Flink系统的高效运行与任务的顺利执行。

Flink源码算子

       Flink应用程序的核心组件包括源(source)、转换(transformation)和目的地(sink),它们共同构成有向图,数据流从源开始,流向sink结束。源算子如env.addSource的底层实现涉及监控函数和连续读取文件操作,如env.readTextFile()调用了一系列方法,最终通过add.source添加到流处理环境。

       转换算子种类繁多,如map和sum。map算子通过函数转换,经过层层调用,最终调用transformations.add方法,将算子添加到作业的血缘依赖列表中。print算子作为sink,通过addSink操作生成StreamSink operator,其SinkFunction负责数据处理,如PrintSinkFunction的打印操作。

       构建过程中,每次转换都会产生新的数据流,这些StreamTransformation会以隐式链表或图的形式组织起来,input属性记录上下游关系。执行阶段,会生成StreamGraph和JobGraph,然后提交到集群进行调度。

透过窗口观无限数据流——Flink的Window全面解析

       窗口是流式计算中关键的算子之一,用于将无限数据流切分为有限大小的“桶”或窗口。在每个窗口内应用计算函数,实现灵活的数据处理。Flink提供了丰富的窗口操作,并支持用户根据特定场景自定义窗口。本文深入探讨窗口的概念、实现方式、窗口函数、生命周期和组件,以便更全面地理解Flink窗口机制。

       窗口基础

       窗口将数据流划分为固定大小的时段,允许在每个时段内进行聚合或分析。通过使用窗口,Flink能够在特定时间范围内对数据进行处理,如统计过去一小时内用户行为、计算每分钟的平均值等。

       窗口类型

       窗口分为Keyed Windows和Non-Keyed Windows。Keyed Windows基于键值对进行操作,适合有特定分组需求的数据流。Non-Keyed Windows适用于未分组数据流,但通常不推荐使用,因其可能导致性能问题。

       如何使用窗口

       通过调用Flink API中的window方法,可以应用各种窗口类型。例如,使用windowAll方法实现Non-Keyed Windows,而window方法则用于Keyed Windows。代码示例展示了如何定义窗口大小、时间单位,并使用不同的窗口类型。

       窗口分配器

       窗口分配器(WindowAssigner)决定数据如何被分配到窗口。Flink提供了多种内置分配器,如时间窗口、滑动窗口、会话窗口和全局窗口,满足不同场景需求。分配器创建窗口并管理元素的归属,确保数据在正确的时间窗口中聚合。

       窗口函数

       Flink的窗口函数分为增量聚合函数和全量窗口函数。增量聚合函数在数据进入窗口时即进行聚合,效率较高。全量窗口函数则在窗口触发时遍历所有数据进行聚合,适用于需要完整数据集进行计算的场景。ProcessWindowFunction结合了两者优势,支持更复杂的聚合逻辑。

       窗口生命周期

       窗口从创建、数据聚合、触发计算到清除,经历多个阶段。分配器分配数据到窗口,触发器根据时间或数据条件决定何时执行计算。窗口结束后,结果被输出,同时可能清除窗口内容。生命周期管理确保计算在适当时间执行,避免资源浪费。

       组件分析

       触发器(Trigger)决定窗口何时触发计算,清除器(Evictor)处理窗口数据的清除。这些组件共同作用,确保Flink窗口机制的高效运行。通过分析源码,可以深入了解Flink如何实现窗口的创建、数据分配、聚合、触发和清理。

       本文综述了Flink窗口机制的核心概念、实现方法和组件细节,为流式计算中的窗口操作提供了全面的指导。通过深入理解窗口机制,开发者可以更高效地处理大规模、实时数据流,实现复杂的数据分析任务。

copyright © 2016 powered by 皮皮网   sitemap