本站提供最佳弘历强弱王指标源码附图服务,欢迎转载和分享。

【美工接单平台源码】【建仓源码公式】【源码集成alsa】带符号的小数源码_带符号的小数源码是什么

2024-12-26 02:55:38 来源:有人喝过乳汁源码 分类:时尚

1.小数的符带符原码是多少
2.怎么求小数的原码和补码?
3.计算机组成原理的补码问题
4.原码,反码,补码,移码

带符号的小数源码_带符号的小数源码是什么

小数的原码是多少

       1.和本就是原码。

       8位字长纯小数,号的号第一位为符号位,小数小数小数点在第一位后面,源码源码后七位为具体数值,符带符如: -0.原码表示为1.,号的号美工接单平台源码反码为1.,小数小数补码为1.;-1的源码源码补码为1.。

       若数据x的符带符形式为x=x0.x1x2…xn(其中x0为符号位,x1~xn是号的号数值的有效部分,也称为尾数,小数小数x1为最高有效位),源码源码则在计算机中的符带符表示形式为:

       一般说来,如果最末位xn= 1,号的号建仓源码公式前面各位都为0,小数小数则数的绝对值最小,即|x|min= 2^(-n)。如果各位均为1,则数的绝对值最大,即|x|max=1-2^(-n)。所以定点小数的表示范围是:2^(-n)≤|x|≤1 -2^(-n)。

扩展资料:

       由于“编码总位数为8”的限制,真值-无法用原码、反码来表示,似乎不能用上述规则来求解补码,但实际上是可行的——只要不管它的最高位即可,操作办法如下:

       将化为二进制为:1 ,源码集成alsa最高位为1,可以只对舍去最高位后剩余的7位进行处理即可,首先取反得:,加1得:1 ,最高位有进位需丢弃,即得:,加上符号位就得补码:1 。

       又如,当编码总位数为4时,真值X=+0.的原码、反码、补码均为:0 。真值X=-0.的gaugan源码解读原码、反码、补码依次为:1 、1 、1 。同理,特例,-1的补码为:1 。在定点小数中,小数点隐含在第一位编码和第二位编码之间。

       按此规则,任何一个小数都可以被写成 :N = NS . N-1 N-2 … N-M。如果在计算机中用m+1个二进制位表示上述小数,则可以用最高(最左)一个二进制位表示符号(如用0表示正号,ae算法源码则1就表示负号),而用后面的m个二进制位表示该小数的数值。

       小数点不用明确表示出来,因为它总是固定在符号位与最高数值位之间,已成定论。定点小数的取值范围很小,对用m+1个二进制位的小数来说,其值的范围为:

       |N| ≤ 1-2^(-m)即小于1的纯小数,这对用户算题是十分不方便的,因为在算题前,必须把要用的数,通过合适的 "比例因子"化成绝对值小于1的小数,并保证运算的中间和最终结果的绝对值也都小于1,在输出真正结果时,还要把计算的结果按相应比例加以扩大。

怎么求小数的原码和补码?

       一、小数部分的原码和补码可以表示为两个复数的分子和分母,然后计算二进制小数系统,根据下面三步的方法就会找出小数源代码和补码的百位形式。

       /=B/2^6=0.B

       -/=B/2^7=0.B

       二、将十进制十进制原始码和补码转换成二进制十进制,然后根据下面三步的方法求出十进制源代码和补码形式。一个

       0.=0.B

       0.=0.B

       三、二进制十进制对应的原码和补码

       [/]源代码=[0.B]源代码=B

       [-/]源代码=[0.b]源代码=B

       [0.]原码=[0.b]原码=B

       [0.]源代码=[0.B]源代码=B

       [/]补体=[0.B]补体=B

       [-/]补体=[0.b]补体=B

       [0.]补码=[0.b]补码=B

       [0.]补体=[0.B]补体=B

扩展资料:

       原码、逆码、补码的使用:

       在计算机中对数字编码有三种方法,对于正数,这三种方法返回的结果是相同的。

       +1=[原码]=[逆码]=[补码]

       对于这个负数:

       对计算机来说,加、减、乘、除是最基本的运算。有必要使设计尽可能简单。如果计算机能够区分符号位,那么计算机的基本电路设计就会变得更加复杂。

       负的正数等于正的负数,2-1等于2+(-1)所以这个机器只做加法,不做减法。符号位参与运算,只保留加法运算。

       (1)原始代码操作:

       十进制操作:1-1=0。

       1-1=1+(-1)=[源代码]+[源代码]=[源代码]=-2。

       如果用原代码来表示,让符号位也参与计算,对于减法,结果显然是不正确的,所以计算机不使用原代码来表示一个数字。

       (2)逆码运算:

       为了解决原码相减的问题,引入了逆码。

       十进制操作:1-1=0。

       1-1=1+(-1)=[源代码]+[源代码]=[源代码]+[源代码]=[源代码]=[源代码]=-0。

       使用反减法,结果的真值部分是正确的,但在特定的值“0”。虽然+0和-0在某种意义上是相同的,但是0加上符号是没有意义的,[源代码]和[源代码]都代表0。

       (3)补充操作:

       补语的出现解决了零和两个码的符号问题。

       十进制运算:1-1=0。

       1-1=1+(-1)=[原码]+[原码]=[补码]+[补码]=[补码]=[原码]=0。

       这样,0表示为[],而之前的-0问题不存在,可以表示为[]-。

       (-1)+(-)=[源代码]+[源代码]=[补充]+[补充]=[补充]=-。

       -1-的结果应该是-。在补码操作的结果中,[补码]是-,但是请注意,由于-0的补码实际上是用来表示-的,所以-没有原码和逆码。(-的补码表[补码]计算出的[原码]是不正确的)。

计算机组成原理的补码问题

       如果最高位表示的是符号位的话,那么表示的小数源码为-0.,因此对应的十进制数位:

       x=-(2^(-2)+2^(-4))

       因此,-1/2x=2^(-3)+2^(-5)

       对应的补码就应该是0.

原码,反码,补码,移码

        写在前面:该文章为本人学习中写的一些笔记和心得,发表出来主要是为了记录自己的学习过程。本人才疏学浅,笔记难免存在不足甚至纰漏,但会不定期更新。

        基本知识:假设有一个n位的二进制数

        则这个二进制数共有 种状态,这个数最大为

        反过来 ,写成二进制为 ,一共有8位,1后面7个小数

        以下举例均为n位数,实例为8位数

        原码

        简单直接的二进制,以下以定点数为例。

        定点纯小数: 0 首位为符号位,0为正1为负,这里表示0.1()

        定点纯整数: 0 这里表示1()

        因为有符号位,所以有正负零之分 0 和 1

        数据范围:-~(后面7位全为1)//公式表达为

        特点:原码不适合加减,但适合乘除

        反码

        正数的反码与其原码相同;负数的反码是对其符号位后的原码逐位取反,符号位不变(为1)

        反码能表达的数据范围:与源码一样

        补码

        目的:方便计算机进行加减

        特点:在机器中适合加减的数字表示方式

        补码能实现计算机"加上负数"的本质原理是模运算,也就是A减去B等于A加上B相对于A的补数再求模。就好像时钟顺时针拨动3h和逆时针拨动9h得到的结果一样。

        二进制求补码:

        补数=(原数+模)(mod 模),很明显,若原码是正,则补码是它本身,对于正数完全不用考虑求补码。

        对于计算机,因为两个相加的数的位数相同(n),且和不能超过n+1位,因此应该取的模是...(n个0)。

        因此对于n位纯小数,它的模(十进制)为2 ,对于n位纯整数,它的模为2 n

        模 : (1 0 )

        原码: ( 0 )

        注意到,尽管符号位没有任何数值信息,这里取模依然把符号位考虑进去了,原因是我们可以通过定义补码,来使第一个符号位参与计算机计算,从而得到想要的结果。

        (同时,把符号位算进去可以让我们在用数学公式法求二进制补数时,直接从结果得到补码

        例: x= -0.

        [x]è¡¥=+x=.-0.=1.

        原来是要取模得补数为0.(2),但正好首位的1可以表示原数的负号,因此可直接读出补码为1

        )

        因此对于补码,符号位既起指示正负号的作用,又参与运算。

        另外,区别于原码有两个0(正负0),在补码的规定中,只有一个0(...的正0,因为原码也全是0),而1 ...可以表示-1(补码纯小数)或-2 n-1 (补码纯整数)

        //可以这么记(以纯整数为例):因为后面n-1个0取反后为n-1个1,加1后为2 n-1 (),前面一个1表示负数,因此补码能表示-2 n-1

        补码怎么来:原码为正,补码与原码相同;原码为负,后面的位数为原码取反加1

        移码

        目的:为了方便计算机比大小,消除符号位对计算机的干扰

        原理是把负数部分全部移到非负数方向,也就是说要把第一位符号位的意义给消除掉。消除方法为:对于补码的正数,符号位由0变为1,增大;对于补码的负数,符号位概念消除,在计算机中被定义为正数,又为了确保原负数小于原正数,符号位由1变为0。

        为了保证每个数之间大小关系不变,要用补码来转换成移码,用原码来转换的话,负数之间的大小关系会反转。

        数学公式:

        宏观上来看是把居中的整个数轴平移到了非负半轴上,每个数之间的大小关系不变。

        纯小数[X] 移 =1+X

        纯整数 [X] 移 = (一般标准)

        移码怎么来:移码和补码尾数相同,符号位相反(也就是补码 首位的1->0 ;0->1)

        因为移码从补码那里来,所以也能额外多表示一个数

【本文网址:http://8o.net.cn/html/96e107698827.html 欢迎转载】

copyright © 2016 powered by 皮皮网   sitemap