【androidstudio如何打包源码】【商城入驻源码】【猫盒app源码】智能对话机器人程序源码_智能对话机器人程序源码是什么

2024-11-18 17:53:56 来源:skia源码分析 分类:时尚

1.?对话??ܶԻ??????˳???Դ??
2.ROS开源项目:(一)中文语音交互系统ROSECHO (二)教学级别无人车Tianracer
3.openai开源了什么
4.Rasa智能对话机器人应用开发硬核实战高手之路
5.尝试了200个AI代码生成器,这47个是机器我觉得最好用的~~~从此再无编程小白!(第一期)
6.树莓派实战:微信机器人(itchat实现)

智能对话机器人程序源码_智能对话机器人程序源码是人程什么

???ܶԻ??????˳???Դ??

       想象一下,身边有一个随时待命、序源聪明过人的码智个人AI小助手,只需语音指令就能满足你的话机androidstudio如何打包源码需求。那么,器人如何在5分钟内打造这样一款专属的程序AI呢?本文将带你从零开始,以新手友好的源码方式,一步步搭建语音对话机器人。对话

       语音对话系统的机器基础构建

       一个语音对话机器人的核心由硬件和软件两部分组成,本文主要关注软件部分,人程它通常包括:

       快速搭建步骤

       为了简化过程,序源我们将采用开源技术进行搭建。码智首先,话机使用阿里开源的FunASR进行语音识别,其中文识别效果优于OpenAI Whisper。你可以通过以下代码测试:

       ...

       大语言模型与个性化回答

       利用大语言模型(LLM),如LLaMA3-8B,理解和生成回复。GitHub上已有中文微调的版本,部署教程如下:

       下载代码

       下载模型

       安装所需包

       启动服务(注意内存优化)

       通过人设提示词定制个性化回答

       无GPU资源时,可选择调用云端API,后续文章会详细介绍。

       语音生成(TTS)

       使用ChatTTS将文字转化为语音,同样采用FastAPI封装,具体步骤略。

       前端交互:Gradio

       Gradio帮助我们快速构建用户界面,以下是WebUI的代码示例:

       ...

       系统搭建完毕与扩展

       现在你已经拥有一个基础的语音对话系统,但可以进一步添加更多功能,提升用户体验。如果你觉得本文有帮助,记得点赞支持。

       关注我的公众号,获取更多关于AI工具和自媒体知识的内容。如果你想获取源码,请私信关键词“机器人”。

ROS开源项目:(一)中文语音交互系统ROSECHO (二)教学级别无人车Tianracer

       开发之路永无止境,往往在最后期限的白板上写着的计划,往往只是一份空想。年初时,我定下了两个目标,计划在年末完成,然而时间在拖延中流逝,直到如今,我才发现,真正的开源精神并非一个人的单打独斗,而是众人协作的火焰。

       记得一年前,我四处奔波,从开源社区汲取养分,同时也渴望贡献出自己的力量。然而,回顾过去,我却发现并没有做出任何贡献。这次,我希望能够集结各路伙伴,如果有志于参与开源项目,我们能共同打造一个GitHub上的百星、千星项目。几位资深程序员已经搭建好了基础,硬件改进较多,商城入驻源码但程序完善程度未达预期。我们期望有更多的年轻朋友加入我们,与我们一起学习软件的版本控制、代码规范和团队协作,共同完成复杂的机器人项目,实现成长与蜕变。

       (一)中文语音交互系统ROSECHO

       ROSECHO的GitHub源码库已准备好,欢迎先star再深入阅读。此代码遵循BSD开源协议。

       详细中文介绍文档

       面对智能音箱市场,许多人或许会质疑我们的团队为何要涉足这个领域。然而,故事并非如此简单。在年,我们计划为一个大型展厅打造讲解机器人,采用流行于Android系统的接待引导机器人,其语音交互功能本无问题,但当时的挑战在于,尚未有集成cartographer在数千平米展厅中进行建图导航的方案。因此,我们决定打造一款完全基于ROS的讲解机器人。市场上虽然有众多智能音箱,但缺乏适用于ROS二次开发的产品。在科大讯飞一位大佬的介绍下,我们选择了AIUI方案,虽然开发难度大,但高度定制化,非常适合我们这样的开发团队。于是,我们主要任务转变为开发一款能够在ROS下驱动的智能音箱,ROSECHO便由此诞生。

       第一版智能音箱在年4月问世,包含W的大喇叭、6环麦克风,以及ROS主控制器,下方控制了一个云迹科技的水滴底盘。了解过ROS星火计划进阶课程的朋友大概知道,课程中的大作业之一是语音命令移动机器人端茶倒水,而我们的任务相当于完成了一个加强版的大作业。

       整个机器人在年7月完成,音箱分散到身体各个部分,环麦位于头顶,喇叭置于身体两侧。其他传感器、执行机构、决策、定位导航均基于ROS,定制了条特定问答,调试的机器人在场馆中行走上下坡不抖动,定位准确,7*小时工作稳定。音箱在大机器人上使用效果出色,主要得益于讯飞的降噪和回声消除技术,使得远场对话和全双工对话得以实现。社区中许多小伙伴也尝试了软核解决方案,但由于环境限制较大。于是,我们决定将音箱从大家伙改为普通智能音箱大小,通电即为智能音箱,USB接入ROS后,只需启动launch,猫盒app源码即可接收语音识别结果,发送TTS语料,配置网络、接收唤醒角度等。

       这次体验深刻地让我认识到,做大容易做小难。过完春节后,年8月ROS暑期夏令营期间,我们做了N款外壳,测试了M种喇叭,贴了P版外围电路,程序则改动不大。主要是由于时间有限,无法进行更多改进。样品均为手工制作,音质上,7w的喇叭配有一个无源辐射板,对于从森海HD入门的人来说,音质虽有瑕疵,但足以满足日常使用。

       之前在想法中发布了一个使用视频,大家可参考运行效果。

       ROSECHO基本情况介绍完毕,如何开始呢?

       从零开始:推荐给手中已有讯飞AIUI评估板的小伙伴,记住,评估板而非麦克风降噪板(外观相似,简单区分是评估板售价元,降噪板元)。手头的评估板可通过3.5mm接口连接普通电脑音箱,再准备一根USB转转换头连接评估板DB9接口。后面需要根据实际串口修改udev规则,理论上可配合ROSECHO软件使用。硬件工作量较大,还需包含移动机器人所需机械设计、电气改造等。好处是拥有AIUI后台,可以定制云端语料和技能,但这又是另一个领域的能力,也不是三下五除二能完成的。

       从ROSECHO开始:直接购买ROSECHO,首发的十台会附赠ROS2GO,只需连接自带电源并用USB线连接电脑,配置无线SSID和密码即可。连接方便,我们维护云端语料,人设为智能机器人管家,大家只需关注如何利用识别后的词句控制机器人和进行应答。云端问答AIUI处理,一些自定义问答可在本地程序中处理,务必联网,因为语音识别本身需要网络。具体软件启动和简单demo请查看GitHub软件库的说明。

       然后做什么:要实现智能语音交互功能的移动机器人,需要对ROS中的actionlib非常熟悉。我们提供了简单的demo,可以控制机器人在turtlebot stage仿真环境中根据语音指令在两点之间移动,也可以根据唤醒方位进行旋转。之后还需增加音箱的TF变换。

       大机器人中的状态机采用层次状态机(Hierarchical state machines),适用于移动机器人的编程,框架准备开源,java大神简历源码方便大家开发自己的智能移动机器人策略。参考下面链接,希望深入了解也可以购买译本,肯定是比ROS By Example中的Smach状态机更适合商用级产品开发。

       还计划做一套简单的语音遥控指令集,机器人问答库,在iflyos中构建适合机器人的技能库。何时能完成尚不确定,大家一起加油!

       (二)教学级别无人车Tianracer

       GitHub源码库已准备就绪,欢迎先star再深入阅读。遵循Hypha Racecar的GPLv3协议。

       这是最近更新的详细使用手册。相比ROSECHO,Tianracer的基本功能均已完成,至少可以拿来学习建图导航,了解SLAM。

       Tianracer是一个经过长时间准备的开源项目,年从林浩鋕手中接过Hypha Racecar后,希望将项目发扬光大。这两年改进了软件框架、周边硬件、机械结构,并增加了新的建图算法,但仍有大量工作待完成。这两个月在知乎想法和微信朋友圈分享了项目的进展,经历了多次迭代,现在大致分为入门、标准、高配三个版本。三个版本的软件统一,可通过环境变量更改设置。

       最近整个项目从Tianbot Racecar更名为TianRacer,经过长时间探索,终于实现了合理的传感器与处理器配置。相比Hypha Racecar,处理器从Odroid XU4更改为NVIDIA在上半年推出的Jetson Nano,车前方增加了广角摄像头,利用Nano的深度学习加速,可以接近实时处理图像数据。相比之前的单线激光,广角摄像头大大扩展了后续可实现的功能。

       TianRacer基本使用Python编写,从底层驱动到遥控等,目的是方便大家学习和二次开发。同时集成了cartographer和vins-fusion启动文件,可以尝试新的激光与视觉SLAM,基于Nano的深度学习物体识别等也是可以直接运行的。但目前功能尚未有机整合。

       从零开始搭建:TianRacer搭建可能难度较大,不仅需要RC竞速车的老玩家进行机械电子改装,还需要对ROS熟悉并修改软件以进行适配,同时可能需要嵌入式程序员的帮助。对于主要关心搭建的朋友,可以参考小林的Hypha Racecar和JetRacer Tamiya版本的搭建指南。

       从TianRacer开始:这批开发版本的无人竞速车附赠搭好环境的ROS2GO,TianRacer本身有开机自启功能,利用ROS2GO加上USB线对车体进行网络配置,就可以远程编程和调试。仔细参考提供的TianRacer看云文档(文档积极更新),大部分车体自带的苹果app资源码功能都可以实现,包括但不限于建图、定位、导航、识别等。

       然后做什么:利用TianRacer学习无人车的基础框架,还可以通过JupyterLab学习Jetson Nano的深度学习算法。未来计划将交通标识识别、行人和车辆检测、车道线检测等无人车基础功能融合,但不确定Jetson Nano的算力是否足够。目标是在校园内进行低成本的无人车竞速比赛,希望像CMU的Mobot室外巡线比赛一样持续发展,至今已举办届。

       这个视频是搬运自YouTube。大家可深入了解非结构环境下的导航。对于不清楚结构化环境与非结构化环境的朋友,CMU和恩智浦的比赛完美诠释了两者之间的区别。

       一起来玩耍吧!

       在开源社区协作方面,我们也是第一次尝试,对于松散的协同开发经验不足,希望参与或组织过大型开源项目的朋友们加入我们,一起努力。有兴趣的朋友可以留言或私信。

       前几日与朋友们闲聊时,想起几年前高翔博士赞助一锅粥(orb-ygz-slam)1万元时,我也只能提供支持。这次真心希望可以贡献出代码,实现实实在在的贡献。

       年年底发布了开发者申请价格,但数量有限,早已连送带卖售罄。年又有几十位爱好者填写了问卷,忘记查阅。每年的双十一双十二我们都会有优惠活动,感谢大家的关注。

openai开源了什么

       OpenAI开源了多个重要的项目和工具。

       首先,OpenAI开源了其核心的深度学习模型,如GPT系列。GPT(Generative Pre-trained Transformer)是一种基于Transformer架构的预训练语言模型,能够生成高质量的自然语言文本。OpenAI通过开源GPT系列模型,使得开发者能够轻松地在自己的应用中使用这些强大的语言模型,从而推动了自然语言处理领域的发展。例如,开发者可以利用GPT模型来构建智能聊天机器人,提供更为自然和智能的对话体验。

       其次,OpenAI还开源了其用于模型训练和推理的工具和库。这些工具和库为开发者提供了丰富的功能和灵活性,使他们能够高效地训练自己的深度学习模型,并将其应用于各种实际场景中。例如,OpenAI提供了易于使用的API,开发者可以通过这些API轻松调用OpenAI的模型进行推理,从而加快了应用开发的进程。

       最后,OpenAI还致力于开源文化和社区的建设。他们不仅公开了模型的源代码和训练数据,还积极与社区分享技术进展、研究方法和最佳实践。这种开源精神极大地促进了人工智能领域的知识共享和技术创新。通过开源,OpenAI为全球的研究者、开发者和创新者搭建了一个共同进步的平台,推动了人工智能技术的快速发展和广泛应用。

       总的来说,OpenAI通过开源其核心模型、工具库以及积极参与开源社区建设,极大地推动了人工智能领域的发展和进步。这些开源项目不仅为开发者提供了强大的技术支持,还为全球范围内的研究和创新活动注入了强大的动力。随着OpenAI在开源方面的不断努力,我们有理由相信,未来的人工智能技术将更加先进、开放和普惠。

Rasa智能对话机器人应用开发硬核实战高手之路

       课程标题:掌握Rasa智能对话机器人应用开发的硬核实战指南

       课程关键字:Rasa Application、E-commerce、Retail、Customer Service、Helpdesk Assistant、Knowledge Base、ElasticSearch、Interactive Learning、Testing、Debugging、Duckling、Microservices、SQLite、Payload、Slot、Mapping、Payload、Docker、Domain、NLU、Policies、Dialogue Management、Intent、Prediction、Confidence、Form、Active Loop, Event、FormValidationAction、CollectingDispatcher、Tracker、Rasa Server、Endpoint

       课程内容:

       Rasa,全球领先的智能业务对话机器人系统和框架,以其基于Transformer架构的NLP技术优势,引领对话机器人领域。掌握Rasa,即掌握了NLP技术的核心与最佳实践落地工具。星空对话机器人推出的“Rasa智能对话机器人应用开发硬核实战之路”,旨在帮助开发者深入理解与掌握Rasa的硬核应用程序开发能力。

       课程分为四大模块,全面解析Rasa核心技术和应用实践:

       1. **Rasa 3.X Interactive Learning对话机器人应用调试与案例实战**:深入了解Rasa Interactive Learning的强大功能,学习如何通过对话与反馈调试机器人程序,掌握Rasa的交互式学习与程序调试技巧。

       2. **Rasa 3.X项目Helpdesk Assistant架构、流程、源码及Interactive本质内幕**:深入剖析Helpdesk Assistant项目的架构设计、流程与源码实现,揭示Rasa的Interactive本质,通过实际案例学习如何构建高效的服务助理。

       3. **基于ElasticSearch的影视对话机器人**:探索如何利用Rasa与ElasticSearch整合,实现智能**与书籍对话机器人,掌握知识库与搜索技术的集成应用。

       4. **电商零售Customer Service智能业务对话机器人**:针对电商与零售场景,构建智能客服系统,实现商品查询、订单管理等功能,学习如何在实际业务中应用Rasa。

       课程设计聚焦于经典场景下的智能业务对话机器人项目,包括其架构设计、源码解析、测试调试及Rasa Interactive Learning等。不仅提供从运行流程到Bug调试的全程演示,还包含命令行交互、微服务代码解析、Rasa可视化工具使用等多个维度的深入讲解,帮助开发者全面掌握Rasa的开发与应用。

       除了理论学习,学员还将获得完整的代码、资料和课程视频,包括根据学员反馈补充的视频内容。课程提供一年的技术答疑服务,由讲师Gavin负责,确保学员在学习过程中遇到的技术问题得到及时解答。

       通过本课程的学习,学员不仅能够深入理解Rasa的核心技术,还能掌握从零到一构建智能对话机器人的全过程,具备实现任意复杂度的Rasa智能业务对话机器人应用产品技术硬实力。

尝试了个AI代码生成器,这个是我觉得最好用的~~~从此再无编程小白!(第一期)

       Codeium 是一种人工智能驱动的代码完成工具,旨在简化编码过程。支持 多种语言并与流行的 IDE 集成,减少样板代码,查找和使用 API,并生成单元测试。允许开发人员以自然语言键入注释以完成代码,被 Adobe、Dropbox、IBM、Pinterest、Salesforce 和 Tesla 等顶级公司信赖,且免费使用。

       Safurai 是一个基于 AI 的 IDE 扩展,帮助开发人员进行编码、调试和重构。充当虚拟助手,为软件开发过程中可能出现的任何问题提供解决方案和建议,改进工作流程和代码质量。

       GitFluence 是一种人工智能驱动的解决方案,帮助用户快速找到适合其特定需求的正确 git 命令。易于使用的网络应用程序,输入所需 git 操作的描述并接收相关命令建议,省时省力。

       Phind 是专为开发人员设计的人工智能搜索引擎,可定制搜索,探索功能,提供 AI 驱动的相关主题和增强搜索结果的建议,还有 Surprise Me 功能随机选择主题供用户发现和探索。

       Cron AI 是一种人工智能驱动的 cron 表达式生成器,简化 cron 作业的创建。易用性,快速将输入的单词转换为 cron 表达式以设置 cron 作业,效率高,减少创建 cron 作业所需的复杂性和时间。

       Amazon CodeWhisperer 是一项由机器学习 (ML) 提供支持的服务,根据开发人员在集成开发环境 (IDE) 中以自然语言和代码发表的评论生成代码建议,提高开发人员的工作效率。

       AI CLI 是开源 GPT -3 Powered CLI,当前提示长度为 ~ 个令牌,1K 令牌的 text-davinci- 定价为 0. 美元,即 ~0. 美元/命令,考虑通过微调改善响应并降低每条命令的成本。

       Bito 是一款由 AI 驱动的代码助手,帮助开发人员自动执行任务并将生成代码的速度提高 倍。生成代码、构建单元测试、创建代码注释、解释新代码以及检查安全漏洞,适用于 AppCode、GoLand、IntelliJ、PyCharm、PhpStorm、Rider、RubyMine 和 WebStorm,注重用户隐私,从不存储或复制代码,始终对数据和日志进行加密。

       Google Colab Copilot 是一款旨在自动化 Google Colab 工作区、简化用户体验的工具。在 Google Colab 上无缝实施,轻松设置,便捷激活,满足数据科学家、研究人员和开发人员的需求。

       Codium 是一种人工智能工具,帮助开发人员更快地编写测试并在部署前发现错误。分析源代码、文档字符串和注释以生成有意义的测试,提供测试建议,侧重于边缘情况和方法参数以确保准确性。

       Code GPT 是一个 VS 代码扩展,具有 StackOverflow 支持、解释、重构、文档、查找问题和单元测试等优秀功能。

       Arduino 代码生成器 是一种人工智能工具,为 Arduino 兼容板自动执行代码生成过程。利用 GPT-3 算法快速生成代码,节省用户时间,提供有关 Arduino 项目的零件、组件和教程的建议,允许用户直接从网站购买零部件。

       Hacker AI 是一种由人工智能驱动的代码审计工具,旨在识别和修复源代码中潜在的安全漏洞。扫描源代码以查找安全问题,帮助组织检测和修复漏洞以防止网络攻击,测试期间免费,无需创建帐户,用户在 分钟内收到漏洞报告。

       Refraction 是一种基于 AI 的代码改进工具,简化开发过程。适用于 C#、C++、Go、Java、JavaScript、TypeScript、PHP、Python、R Lang、Ruby 和 Swift,自动重构和测试,代码解释、语言转换、硬编码文字分离和样式检查。

       Maverick 是一种由 AI 提供支持的代码完成工具,基于 Yurts,专注于在不接触任何 API 或知识库的情况下在本地机器上提供最佳代码完成。

       Buildt AI 是一种基于人工智能的代码库搜索工具,简化开发人员的代码管理。使用自然语言搜索快速准确地查找、生成和替换代码片段,生成新代码、重构现有代码、扩展功能以及删除遗留或重复代码,添加或更新依赖更改,支持 Javascript 和 Typescript,未来计划支持 + 语言。

       CodeGeeX 是一个拥有 亿参数的大规模多语言代码生成模型,在超过 种编程语言的大型代码语料库上进行预训练,支持 种以上的代码生成和翻译编程语言。

       Programming Helper 是一种人工智能工具,协助完成各种编程任务。从文本描述生成代码、SQL 命令、HTML 和 CSS,将代码翻译成任何编程语言并用通俗易懂的英语解释代码,修复无效代码、生成测试并向代码添加类型,创建正则表达式、查找 Git 命令、获取 Linux 命令以及根据描述生成元标记,提供编程相关问题的解答。

       CodeAssist 是一个人工智能聊天机器人界面,专为在 Jetbrains IDE 和 Visual Studio Code 中编程而设计。与聊天机器人交流,就像与人交谈一样,允许它查看和修改代码,根据用户的代码库生成代码完成,考虑代码库其他部分的文件和函数/类,适用于所有流行的编程语言,提供更集中的响应。

       Clippy AI(VS 代码扩展)是 OpenAI Codex 的简单包装器,允许您向 Codex 发送您的当前文件以及一些纯文本英语说明,然后它会在您的编辑器中打开一个差异视图,以便您可以轻松查看建议的更改并接受或拒绝它们。

树莓派实战:微信机器人(itchat实现)

       本文介绍如何利用树莓派和开源库itchat构建微信机器人,实现自动回复、AI聊天、定时发送天气预报以及控制摄像头等实用功能。树莓派作为小时在线的server,使得微信机器人的应用范围更加广泛。

       itchat是一个用于微信个人号接口的开源库,通过少量代码(不足行)即可实现微信机器人功能。其原理是模拟微信网页版客户端,通过HTTP协议进行通信。具体实现细节可以参考github上的源码。

       首先,实现自动回复功能。注册消息处理函数以应对不同类型的微信消息,包括文本、、语音、视频等。默认处理单聊消息,同时可以扩展处理群聊消息。程序启动后,通过扫描二维码登录,然后自动运行。为避免发送消息给自己无效,可以通过发送消息给文件传输助手filehelper实现相同效果。

       接下来,实现AI聊天功能。结合AI本地库或在线API,如青云客,可实现基于关键字命令的对话功能。对于自由对话可能效果不佳。在实现AI聊天功能的基础上,可以进一步获取天气预报信息,通过AI请求传递特定地点的天气查询。

       定时发送天气预报功能需要解决定时任务执行和消息发送问题。Python库apscheduler可实现定时任务调度,而itchat提供便捷的API来搜索特定群。

       控制摄像头功能则包括通过USB接口连接摄像头、使用fswebcam进行拍照以及使用linphone进行视频通话。fswebcam是用于拍照的命令行工具,而linphone是一个开源的IP电话客户端,适合在树莓派上使用。

       完整代码已上传至GitHub,提供实用示例和详细的实现步骤。除了上述功能,还增加了健身打卡、睡觉打卡等实用功能,使得微信机器人的功能越来越丰富。

       参考itchat提供的教程文档,可以找到更多关于微信机器人功能的实现和扩展。通过利用树莓派和itchat,开发微信机器人成为了可能,为自动化和智能化应用提供了新的途径。

本文地址:http://8o.net.cn/html/99c168098220.html 欢迎转发