1.【STL源码剖析】总结笔记(3):vector初识
2.STL源码剖析9-set、码剖multiset
3.STL源码剖析总结笔记(2):容器(containers)概览
【STL源码剖析】总结笔记(3):vector初识
vector是码剖c++中常用且重要的容器之一。相较于固定大小的码剖array,vector拥有动态分配内存的码剖特性,允许它在使用过程中随着元素的码剖增删而自行调整大小。这种动态性使得vector在处理不可预知数据量时更为便捷。码剖钓鱼高仿源码
内部结构上,码剖vector使用了数组作为存储基础,码剖并通过start,码剖 finish和end of storage三个迭代器进行访问和管理空间。其中,码剖start和finish分别指向可用空间的码剖首端和尾端,end of storage则指向内存块的码剖末尾。在vector大小为字节(位系统下,码剖一个指针占4字节)的码剖情况下,其大小为3。码剖psd广告源码因此,vector可以灵活地通过迭代器定位数据的大小与位置。
内存管理机制是vector的精华之一。当空间耗尽时,vector会自动扩展为二倍的内存容量,以容纳新增元素。此过程涉及创建新空间,复制原有数据,然后释放旧空间,确保资源的有效利用。
vector提供了丰富的迭代器,遵循随机访问的行为,允许直接获取和修改数据,增强操作的asp打分源码效率。这些迭代器简化了对数据结构的遍历与修改操作。
在添加与删除数据时,vector提供了pop_back(), erase, insert等高效方法。例如,pop_back()简单地删除尾部元素,erase允许清除一个范围内的数据,并通过复制来维持数据的连续性。insert操作根据具体需求进行数据的插入与调整,确保结构的完整性与数据的正确性。
综上,vector以其灵活的内存管理和高效的数据操作,成为学习STL和掌握容器结构的理想选择。其清晰的内部机制和丰富的功能特性,为程序设计提供了强大的客如云源码支持。
STL源码剖析9-set、multiset
STL源码剖析-set、multiset
在深入探讨STL源码时,set与multiset是关键组件,它们皆基于红黑树实现。这些数据结构设计旨在高效处理有序集合。set类及其内部rb tree模板参数identity,定义在stl_function.h文件中,是仿函数的一种实现。这表明set类能够灵活地根据用户自定义的比较规则来组织数据,从而提供强大的灵活性。
具体而言,stl_set.h文件中定义了set类,它封装了红黑树结构,bi源码 app用于存储无重复元素的集合。借助rb tree的特性,set能够保证插入、删除、查找等操作的时间复杂度为O(log n)。而identity参数的选择,使得用户能基于不同的比较逻辑自定义元素间的相对顺序,适应多种应用场景。
多集类multiset则是在set的基础上扩展而来的,它允许集合中元素重复出现。这种设计使得multiset在需要存储有重复元素的有序集合时更为适用。与set类似,multiset同样基于红黑树实现,但其模板参数identity的用法与set相同,依然定义在stl_function.h中,以便实现自定义的比较逻辑。
在stl_multiset.h文件中,可找到multiset类的定义。它继承自set,并通过增加对重复元素的支持,为用户提供了一个更灵活的数据结构选择。通过灵活运用multiset,开发人员能够轻松实现需要频繁插入、删除重复元素的有序集合,同时保持高效的操作性能。
总结而言,set与multiset作为STL中的重要组件,分别针对无重复元素与允许重复元素的有序集合提供高效实现。通过自定义比较逻辑与红黑树结构的结合,它们不仅保证了数据的有序性,还提供了高效的操作性能,成为众多应用程序中不可或缺的数据结构。
STL源码剖析总结笔记(2):容器(containers)概览
容器作为STL的重要组成部分,其使用极大地提升了解决问题的效率。深入研究容器内部结构与实现方式,对提升编程技能至关重要。本文将对容器进行概览,分为序列式容器、关联式容器与无序容器三大类。
容器大致分为序列式容器、关联式容器和无序容器。其中序列式容器侧重于顺序存储,关联式容器则强调元素间的键值关系,而无序容器可以看作关联式容器的一种。
容器之间的关系可以归纳为:序列式容器为基层,关联式容器则在基层基础上构建了更复杂的数据结构。例如,heap和priority容器以vector作为底层支持,而set和map则采用红黑树作为基础数据结构。此外,还存在一些非标准容器,如slist和以hash开头的容器。在C++ 中,slist更名为了forward-list,而hash开头的容器改名为了unordered开头。
在容器的实现中,sizeof()函数可能揭示容器的内部大小对比。需要注意的是,尽管在GNU 4.9版本中,一些容器的设计变得复杂,采用了较多的继承结构,但实际上,这些设计在功能上并未带来太大差异。
熟悉容器的结构后,我们可以从vector入手,探索其内部实现细节。其他容器同样蕴含丰富的学习内容,如在list中,迭代器(iterators)的设计体现了编程的精妙之处;而在set和map中,红黑树的实现展现了数据结构的高效管理。
本文对容器进行了概览,旨在提供一个全面的视角,后续将对vector、list、set、map等容器进行详细分析,揭示其背后的实现机制与设计原理。