皮皮网

【源码不卡顿】【源码编辑器存档】【修改通达信源码】atlas 源码分析

2024-12-27 15:04:46 来源:安全跳转HTML源码

1.华为Atlas 200DK环境搭建&推理测试
2.CANN训练营笔记Atlas 200I DK A2体验手写数字识别模型训练&推理
3.apache atlas独立部署(hadoop、码分hive、码分kafka、码分hbase、码分solr、码分zookeeper)
4.太阳能智慧路灯哪个牌子比较好?
5.Atlas系列-编译部署-Atlas2.1.0独立部署

atlas 源码分析

华为Atlas 200DK环境搭建&推理测试

       引子

       华为Atlas DK,码分源码不卡顿一款边端推理芯片,码分本文将带你了解如何搭建其开发环境并进行推理测试。码分

       一、码分环境搭建

       1.1 物理硬件准备

       需要一台x架构的码分Linux PC机、USB连接线、码分网线、码分内存不低于GB的码分SD卡与SD卡读卡器。

       1.2 软件准备

       需从网络自行下载1.0.版本的码分固件驱动,官网提供的码分最低驱动版本为1.0.,但该版本不兼容设备。

       1.3 刻录开发板系统

       将SD卡插入读卡器,安装相关软件包,创建制卡工作目录,上传操作系统与驱动包,使用脚本制卡。源码编辑器存档

       1.4 网络配置

       安装USB网卡驱动,配置USB与NIC网卡IP,通过SSH登录设备并调整网络设置。

       1.5 安装CANN

       确保CANN版本与固件驱动版本一致,从网络下载对应的CANN版本,卸载不符合版本的Python,安装CANN。

       二、项目演示:基于Resnet的分类应用

       获取源码包并安装依赖,如opencv与numpy。进行样例输入准备与模型转换。使用ATC进行模型转换。

       设置环境变量,执行运行脚本。展示样例结果,包括置信度TOP5的类别标识、置信度信息和对应类别信息。

CANN训练营笔记Atlas I DK A2体验手写数字识别模型训练&推理

       在本次CANN训练营中,我们对华为Atals I DK A2开发板进行了详细的探索,该板子配备有4GB内存和Ascend B4 NPU,修改通达信源码运行的是CANN 7.0环境。

       首先,为了顺利进行开发,我们需要下载预编译的torch_npu,并安装PyTorch 2.1.0和torchvision 0..0。接着,配置环境变量,确保系统可以识别所需的库和文件。Ubuntu系统和欧拉系统下的安装步骤有所不同,例如,需要将opencv的头文件链接到系统默认路径。

       对于ACLLite库,我们采取源码安装方式,确保动态库的识别,并在LD.so.conf.d下添加ffmpeg.conf配置。同时,设置ffmpeg的安装路径和环境变量。接着,克隆ACLLite代码仓库并安装必要的依赖。

       进入模型训练阶段,穿越火线内存注入源码我们调整环境变量来减少算子编译时的内存占用,然后运行训练脚本来启动训练过程。在训练结束后,我们生成了mnist.pt模型,并将其转换为mnist.onnx模型,以便进行在线推理。

       在线推理阶段,我们使用训练得到的模型对测试进行识别。测试展示了一次实际的推理过程,其结果直观地展示了模型的性能。

       对于离线推理,我们从PyTorch框架导入ResNet模型,并转换为升腾AI处理器能识别的格式。提供了下载模型和转换命令,只需简单拷贝执行。将在线推理的mnist.onnx模型复制到model目录后,我们配置AIPP,进行模型转换,然后编译样例源码并运行,得到最终的怎么找知网源码推理结果。

apache atlas独立部署(hadoop、hive、kafka、hbase、solr、zookeeper)

       在CentOS 7虚拟机(IP: ...)上部署Apache Atlas,独立运行时需要以下步骤:

       Apache Atlas 独立部署(集成Hadoop、Hive、Kafka、HBase、Solr、Zookeeper)

       **前提环境**:Java 1.8、Hadoop-2.7.4、JDBC驱动、Zookeeper(用于Atlas的HBase和Solr)

       一、Hadoop 安装

       设置主机名为 master

       关闭防火墙

       设置免密码登录

       解压Hadoop-2.7.4

       安装JDK

       查看Hadoop版本

       配置Hadoop环境

       格式化HDFS(确保路径存在)

       设置环境变量

       生成SSH密钥并配置免密码登录

       启动Hadoop服务

       访问Hadoop集群

       二、Hive 安装

       解压Hive

       配置环境变量

       验证Hive版本

       复制MySQL驱动至hive/lib

       创建MySQL数据库并执行命令

       执行Hive命令

       检查已创建的数据库

       三、Kafka 伪分布式安装

       安装并启动Kafka

       测试Kafka(使用kafka-console-producer.sh与kafka-console-consumer.sh)

       配置多个Kafka server属性文件

       四、HBase 安装与配置

       解压HBase

       配置环境变量

       修改配置文件

       启动HBase

       访问HBase界面

       解决配置问题(如JDK版本兼容、ZooKeeper集成)

       五、Solr 集群安装

       解压Solr

       启动并测试Solr

       配置ZooKeeper与SOLR_PORT

       创建Solr collection

       六、Apache Atlas 独立部署

       编译Apache Atlas源码,选择独立部署版本

       不使用内置的HBase和Solr

       编译完成后,使用集成的Solr到Apache Atlas

       修改配置文件以指向正确的存储位置

       七、Apache Atlas 独立部署问题解决

       确保HBase配置文件位置正确

       解决启动时的JanusGraph和HBase异常

       确保Solr集群配置正确

       部署完成后,Apache Atlas将独立运行,与Hadoop、Hive、Kafka、HBase、Solr和Zookeeper集成,提供数据湖和元数据管理功能。

太阳能智慧路灯哪个牌子比较好?

       太阳能智慧路灯是一种利用太阳能发电并具备智能控制功能的路灯。它不仅能够为道路提供照明,还能够实现能源的可持续利用和智能化管理。目前市场上有许多不同品牌的太阳能智慧路灯,下面将介绍几个比较好的品牌。

       首先是飞利浦(Philips)太阳能智慧路灯。飞利浦是一家全球知名的照明解决方案提供商,其太阳能智慧路灯具有高效能源利用、智能控制和可靠性强等特点。飞利浦的太阳能智慧路灯采用先进的LED技术,能够提供高亮度的照明效果,并且具备智能控制系统,可以根据不同的环境和需求进行调节,实现能源的最大化利用。

       第二个品牌是阿特斯(ATLAS)太阳能智慧路灯。阿特斯是一家专注于太阳能照明产品的制造商,其太阳能智慧路灯具有高效能源利用、环保节能和智能控制等特点。阿特斯的太阳能智慧路灯采用高效的太阳能电池板和先进的LED灯源,能够提供稳定的照明效果,并且具备智能控制系统,可以根据不同的需求进行调节,实现能源的最大化利用。

       第三个品牌是华为(Huawei)太阳能智慧路灯。华为是一家全球领先的信息和通信技术解决方案提供商,其太阳能智慧路灯具有高效能源利用、智能控制和可靠性强等特点。华为的太阳能智慧路灯采用先进的太阳能电池板和高效的LED灯源,能够提供高亮度的照明效果,并且具备智能控制系统,可以根据不同的环境和需求进行调节,实现能源的最大化利用。

       除了以上几个品牌,市场上还有许多其他品牌的太阳能智慧路灯,如格力(GREE)、三星(Samsung)等。在选择太阳能智慧路灯时,消费者可以根据自己的需求和预算来选择合适的品牌和型号。同时,还应该关注产品的质量和售后服务,选择有信誉和口碑好的品牌,以确保产品的质量和使用效果。

Atlas系列-编译部署-Atlas2.1.0独立部署

       本文将为您详细介绍如何独立部署 Atlas 2.1.0 版本,依赖组件包括 solr、hbase、zookeeper、hive、hadoop、kafka。我们将采用 Docker 容器与 Linux 环境进行部署。如果您在 Atlas 的编译部署过程中遇到问题,本指南将提供解决方案。

       部署流程如下:

       部署环境

       1. Linux 环境:若无 Linux 环境,可通过 Docker 构建。如已安装 Linux,推荐使用 CentOS 镜像,本文作者最初在 Windows 环境下进行部署,并制作了一个 CentOS 镜像。构建步骤如下:

       1. 拉取镜像

       2. 运行容器

       2. Zookeeper 环境搭建:使用 Docker 方式搭建 Zookeeper,配置步骤包括:

       1. 拉取 Docker 镜像

       2. 运行容器

       3. Hadoop 环境搭建:同样采用 Docker 方式搭建 Hadoop,步骤如下:

       1. 拉取镜像

       2. 建立 Hadoop 用的内部网络

       3. 创建并启动 Master 容器,映射端口,如 端口用于 Hiveserver2,以便后续客户端通过 beeline 连接 Hive

       4. 创建 Slave 容器

       5. 修改 hosts 文件,将 Master 和 Slave 的 IP 地址映射到容器内部

       6. 启动 Hadoop,格式化 HDFS,并启动全部服务

       7. 访问 Web 查看服务状态,如 hdfs: localhost: 和 yarn: localhost:

       4. 部署 Hive:由于 Hive 镜像与 Hadoop 镜像整合,使用已启动的 Hadoop 镜像进行部署:

       1. 进入 Master 容器

       2. 修改配置文件,添加相关环境变量

       3. 执行源命令生效

       4. 完成数据库配置,确保与 Hive 配置文件中的分隔符一致,并关闭 SSL 验证

       5. 上传 MySQL 驱动到 Hive 的 lib 目录,调整 jar 包配置,确保 slf4j 和 guava 包版本一致

       6. 初始化元数据库,完成 Hive 的安装与启动

       7. 修改 Hadoop 权限配置

       8. 启动 Hiveserver2

       9. Hbase 搭建:由于使用 Docker 遇到问题,改为在容器外搭建 Hbase 环境。步骤包括:

       1. 拉取容器

       2. 创建并运行容器

       3. 进入容器

       4. 修改 Hbase 配置

       5. 启动 Hbase

       6. 访问 Web 界面地址 localhost:

       . Solr 搭建:使用 Docker 方式搭建 Solr,步骤如下:

       1. 拉取镜像

       2. 运行容器

       3. 创建 collection

       4. 访问 Web 界面地址 localhost:

       . Atlas 独立部署:Atlas 2.1.0 版本独立部署依赖外部组件,不同于集成部署。步骤包括:

       1. 从 Apache Atlas 下载源码,如 apache-atlas-2.1.0-server.tar.gz

       2. 使用 Docker 镜像环境进行编译,选择之前构建的基础环境

       3. 将源码复制到容器内

       4. 修改 pom.xml 文件以适应环境依赖

       5. 执行编译命令

       6. 解压 /distro/target/apache-atlas-2.1.0-bin.tar.gz 文件

       7. 进入 bin 目录,启动应用

       至此,Atlas 2.1.0 版本独立部署完成,可访问 localhost: 查看部署结果。