【积分兑换系统源码】【产品追溯asp源码】【通过svn获得源码】lsm源码
1.lsmԴ??
2.哪些c++项目的源代码最值得阅读?
3.深入浅出存储引擎
4.LevelDB 源码剖析1 -- 原理
5.FREE SOLO - 自己动手实现Raft - 15 - leveldb源码分析与调试-1
6.2024年度Linux6.9内核最新源码解读-网络篇-server端-第一步创建--socket
lsmԴ??
LSM(Linux Security Module)是Linux内核中的安全模块框架,旨在提供一种机制以新内核扩展的方式实现各种安全检查。LSM并不等同于传统意义上的内核模块,而是通过编译时引入和boot阶段通过命令行加载的方式实现。Linux Kernel 2.6版本正式加入了LSM子系统,从而能够同时引入多个不同的积分兑换系统源码安全模块。
LSM的诞生和发展与Security-Enhanced Linux(SELinux)的提议有关。虽然SELinux未能在Linux Kernel 2.5版本中实现,但其促使了LSM的开发。LSM的实现允许安全开发人员编写LSM模块,而无需对系统调用表进行修改,只需遵循既定的调用规范。
LSM在Linux安全体系中的位置是介于访问内核对象和DAC(强制存取控制)检查之间。LSM调用系统中启用的访问控制模块,检查是否允许访问内核对象。如果有多个访问控制模块,会根据优先顺序执行,所有模块都允许访问后,才能进一步访问内核对象。LSM机制通过hook框架进行内核安全审计和元数据捕获,使得安全开发人员能以最少的内核代码改动实现强制访问控制。
LSM的实现包括在关键内核数据结构中添加安全域、在内核源代码中插入安全钩子函数调用、加入通用安全系统调用、允许内核模块注册为安全模块或注销,并将capabilities逻辑大部分移植为可选的安全模块。这些设计使得LSM简单实用,几乎涵盖了可能出现安全问题的所有地方。
LSM的一个具体应用是SELinux,它是最知名的LSM之一。SELinux通过在inode结构体中加入安全域,并添加hook函数调用,实现了在内核中的产品追溯asp源码具体实现。SELinux通过安全hook函数的初始化和插入哈希链表操作,在不同的安全引擎之间工作。此外,SELinux在LSM数据结构、初始化阶段以及配置安全策略方面,提供了详细的实现细节。
总结来说,LSM为Linux内核提供了一种灵活且高效的安全扩展机制,允许引入和实现多种安全模块,以增强系统的安全性和可控性。通过LSM框架,安全开发人员能够在保持内核稳定性的前提下,轻松地实现和维护各种安全策略。
哪些c++项目的源代码最值得阅读?
阅读 C++ 项目源代码的最佳选择之一是 Facebook Folly。这是一个由 Facebook 开源的 C++ 库,内部广泛使用。相较于庞大如 Chromium 的源码库,Folly 更适合学习者阅读。Chromium 源码总计 万行,完全掌握需要极高的专业性,而 Folly 则提供了对 C++ 标准库的补充,特别是在大规模性能优化方面表现出色。Folly 中包含高性能 hash map 和 string 等工具,相比标准库在性能上有显著提升。
使用 Folly 的关键在于,它不是为了替代标准库而存在,而是对其进行补充,特别是在处理大规模数据时。通过学习 Folly,可以快速提升对 C++ 的理解。了解 Folly 的设计理念和实现方式,可以帮助开发者更好地掌握 C++ 的通过svn获得源码高级特性。
另一个推荐的项目是 Google LevelDB,它是一个用于学习 LSM(Log-Structured Merge)存储结构的优秀代码实现。相较于 Chromium 的庞大体量,LevelDB 更适合个人学习,代码量不大,易于掌握。通过研究 LevelDB 的架构和设计,可以深入了解键值存储系统的实现。
此外,我还整理了一份电子书库,涵盖了计算机科学的多个领域,包括编程语言、操作系统、计算机网络、系统架构、设计模式、程序员数学、测试、中间件、前端开发、后台开发、网络编程、Linux 使用与内核、数据库、Redis 等。这份书单不仅包含了主流编程学习书籍,还提供了实际的获取方式,对于计算机专业的学生和学习者来说,这份资源非常系统且实用。
最后,了解 LevelDB 的架构将有助于深入理解其工作原理和设计决策。通过观察其整体架构和各个组件之间的反弹指标源码关系,可以直观地了解 LevelDB 如何实现高效的数据存储与检索。
深入浅出存储引擎
深入浅出存储引擎
本文详细探讨了数据库系统中的存储引擎相关概念,以及存储引擎如何实现高效的数据存储与检索。存储引擎是数据库系统的核心组件,负责处理数据的存储、检索和维护。
首先,文章介绍了数据存储体系,包括OLTP、OLAP与HTAP,以及关系数据库、NoSQL数据库与NewSQL数据库的特性。接着,讨论了基于内存型与磁盘型存储组件的数据存储方式,以及读多写少、写多读少和读多写多组件的处理策略。文章进一步解释了数据存储与检索的过程,强调了存储引擎在其中的核心作用。
文章详细分析了存储引擎的分类,包括基于B+树的存储引擎和基于LSM派系的存储引擎。基于B+树的存储引擎适合于读多写少的场景,而基于LSM派系的存储引擎则适用于写多读少的场景。文章还讨论了内存、持久化内存和磁盘在数据存储中的应用,以及它们的管理机制。
从宏观角度,文章解析了B+树存储引擎的原理,包括其诞生背景、设计目标、数据结构选择、索引维护和存储策略。从微观角度,网上头像源码文章深入探讨了B+树存储引擎的工程细节,如边界条件处理、异常情况处理、事务管理和范围查询。
文章进一步分析了BoltDB核心源码,从整体结构、page解析、node解析、Bucket解析到事务解析,详细解释了BoltDB存储引擎的实现机制。这为理解和实现类似的存储引擎提供了宝贵的参考。
接着,文章深入理解了LSM Tree原理,从其发展背景、从零推导LSM Tree、架构演进和核心问题等角度进行了全面分析。文章详细探讨了LSM Tree的工程应用、KV分离存储技术WiscKey、Bitcask的核心原理以及Moss的核心原理,展示了LSM Tree在不同场景下的应用。
最后,文章分析了LSM派系存储引擎,包括LSM Tree存储引擎、LSM Hash存储引擎、LSM Array存储引擎以及其他LSM存储引擎的特性和实现方法。文章提供了这些存储引擎的详细解析,有助于读者深入了解LSM存储引擎的实现细节。
LevelDB 源码剖析1 -- 原理
LSM-Tree,全称Log-Structured Merge Tree,被广泛应用于数据库系统中,如HBase、Cassandra、LevelDB和SQLite,甚至MongoDB 3.0也引入了可选的LSM-Tree引擎。这种数据结构旨在提供优于传统B+树或ISAM(Indexed Sequential Access Method)方法的写入吞吐量,通过避免随机的本地更新操作实现。
LSM-Tree的核心思想基于磁盘性能的特性:随机访问速度远低于顺序访问,三个数量级的差距。因此,简单地将数据附加至文件尾部(日志或堆文件策略)可以提供接近理论极限的写入吞吐量。尽管这种方法足够简单且性能良好,但它有一个明显的缺点:从日志中随机读取数据需要花费更多时间,因为需要按时间顺序从近及远扫描日志直至找到所需键。因此,日志策略仅适用于简单的数据访问场景。
为了应对更复杂的读取需求,如基于键的搜索、范围搜索等,LSM-Tree引入了一种改进策略,通过创建一系列排序文件来存储数据,每次写入都会生成一个新的文件,同时保留了日志系统优秀的写性能。在读取数据时,系统会检查所有文件,并定期合并文件以减少文件数量,从而提高读取性能。
在LSM-Tree的基本算法中,写入数据按照顺序保存到一组较小的排序文件中。每个文件代表了一段时间内的数据变更,且在写入前进行排序。内存表作为写入数据的缓冲区,用于保持键值的顺序。当内存表填满后,已排序的数据刷新到磁盘上的新文件。系统会周期性地执行合并操作,选择一些文件进行合并,以减少文件数量和删除冗余数据,同时维持读取性能。
读取数据时,系统首先检查内存缓冲区,若未找到目标键,则以反向时间顺序检查各个文件,直到找到目标键。合并操作通过定期将文件合并在一起,控制文件数量和读取性能,即使文件数量增加,读取性能仍可保持在可接受范围内。通过使用内存中保存的页索引,可以优化读取操作,尤其是在文件末尾保留索引块,这通常比直接二进制搜索更高效。
为了减少读取操作时访问的文件数量,新实现采用了分级合并(Leveled Compaction),即基于级别的文件合并策略。这不仅减少了最坏情况下需要访问的文件数量,还减少了单次压缩的副作用,同时提供更好的读取性能。分级合并与基本合并的主要区别在于文件合并的策略,这使得工作负载扩展合并的影响更高效,同时减少总空间需求。
FREE SOLO - 自己动手实现Raft - - leveldb源码分析与调试-1
leveldb 是由 Google 基础架构工程师 Jeff Dean 所设计的,是一种高效、可靠的键值对存储系统。它基于LSM(Log-Structured Merge)存储引擎,代码简洁精炼,非常适合深入学习与理解。leveldb 不仅可以作为一个简单的键值对引擎使用,而且内部组件如LRU Cache也具有独立的实用性,还能在此基础上封装出其他操作接口,例如vraft中的raftlog和metadata等。
通过理解leveldb,能够对后续学习如rocksdb等更高级的数据库引擎提供坚实基础。本文旨在从状态机的角度解析leveldb,帮助读者深入理解其内部工作原理。
在leveldb中,关键状态包括但不限于内存、磁盘状态以及LRU Cache状态。内存数据与磁盘数据的交互是leveldb的核心,用户的键值对数据通过日志写入到memtable,然后通过immutable memtable最终到达磁盘上的sorted table文件,这些文件按照级别(level)从0到6逐级存储。通过在关键时刻添加ToJson函数,可以记录这些状态的变化,便于分析。
LRU Cache在leveldb中的实现同样值得深入研究。它作为一种缓存机制,有助于优化数据访问效率。通过在LRU Cache中添加ToJson函数并打印状态,可以直观地观察其内部结构和状态的动态变化。
为了更好地理解leveldb,本文将重点分析关键数据结构,并通过观察不同动作导致的状态变化,来深入探究leveldb的内部机制。在后续文章中,将详细展示leveldb内部状态的转换过程,以帮助读者掌握其核心工作原理。
年度Linux6.9内核最新源码解读-网络篇-server端-第一步创建--socket
深入解析年Linux 6.9内核的网络篇,从服务端的第一步:创建socket开始。理解用户空间与内核空间的交互至关重要。当我们在用户程序中调用socket(AF_INET, SOCK_STREAM, 0),实际上是触发了从用户空间到内核空间的系统调用sys_socket(),这是创建网络连接的关键步骤。 首先,让我们关注sys_socket函数。这个函数在net/socket.c文件的位置,无论内核版本如何,都会调用__sys_socket_create函数来实际创建套接字,它接受地址族、类型、协议和结果指针。创建失败时,会返回错误指针。 在socket创建过程中,参数解析至关重要:网络命名空间(net):隔离网络环境,每个空间有自己的配置,如IP地址和路由。
协议族(family):如IPv4(AF_INET)或IPv6(AF_INET6)。
套接字类型(type):如流式(SOCK_STREAM)或数据报(SOCK_DGRAM)。
协议(protocol):如TCP(IPPROTO_TCP)或UDP(IPPROTO_UDP),默认值自动选择。
结果指针(res):指向新创建的socket结构体。
内核标志(kern):区分用户空间和内核空间的socket。
__sock_create函数处理创建逻辑,调用sock_map_fd映射文件描述符,支持O_CLOEXEC和O_NONBLOCK选项。每个网络协议族有其特有的create函数,如inet_create处理IPv4 TCP创建。 在内核中,安全模块如LSM会通过security_socket_create进行安全检查。sock_alloc负责内存分配和socket结构初始化,协议族注册和动态加载在必要时进行。RCU机制保护数据一致性,确保在多线程环境中操作的正确性。 理解socket_wq结构体对于异步IO至关重要,它协助socket管理等待队列和通知。例如,在TCP协议族的inet_create函数中,会根据用户请求找到匹配的协议,并设置相关的操作集和数据结构。 通过源码,我们可以看到socket和sock结构体的关系,前者是用户空间操作的抽象,后者是内核处理网络连接的实体。理解这些细节有助于我们更好地编写C++网络程序。 此外,原始套接字(如TCP、UDP和CMP)的应用示例,以及对不同协议的深入理解,如常用的IP协议、专用协议和实验性协议,是进一步学习和实践的重要部分。