如何评价ORB-SLAM3?
我觉得 ORB-SLAM3 系统是基于之前的 ORB-SLAM2、ORB-SLAM-VI 进行扩展。坐标作者组的统源工作一脉相承,围绕着 ORB feature-based SLAM 做了非常多有重大意义的码多工作。本文其中在一些重要改进模块,个相如 IMU 初始化、机坐html服装模板源码multi-map system 等,标统是源码作者组里前几年的工作。我认为这是设置一篇更加偏向于系统性质的文章,把这么多工作串了起来,相机并且作者非常慷慨的坐标把它开源了出来,非常赞!统源ROS博客基于ROS的码多自动驾驶数据集可视化项目(附源代码)
项目简介
基于加州大学伯克利分校 MSC Lab的自动驾驶数据集,本项目旨在进行数据集的个相可视化。项目源代码已上传至 GitHub,机坐英文版文章与演示视频也已准备就绪。
数据集展示
左侧展示了GPS信号的可视化,通过 Mapviz 工具,将行驶过程中走过的路径显示出来,左上角则呈现了车前摄像头的视角。右侧是自定义的可视化,利用绿色代表 y 轴正方向,小说站源码哪个好用蓝色表示 x 轴正方向。紫色圆点表示汽车行驶过程中各个方向的加速度信息,天蓝色箭头指示汽车前进方向,绿色则代表不同强度的加速度。
问题与解决方案
在使用 Mapviz 可视化 GPS 信号时,遇到了数据格式不匹配的问题。通过在自定义的 package 中编写 `trans_GPS.cpp` 文件,成功实现了数据格式转换,解决了数据可视化的问题。同时,还撰写了关于 Mapviz 的基础使用教程。
加速度信息的可视化涉及确定坐标轴方向、避免信息跳动以及直观显示加速度大小。通过在 RVIZ 中绘制 x 和 y 轴,并使用平滑器处理频繁读取的 IMU 数据,成功解决了这些问题。极坐标系的引入使得加速度大小的显示更为直观。
汽车前进方向的可视化涉及到姿态信息的获取与 RVIZ 显示角度的调整。通过分析 IMU 的 orientation 数据,并设置 marker 的 orientation 值,实现了方向的织梦网站源码免费正确显示。
相机信息的可视化面临格式转换问题。通过使用 `image_transport` 包装解决了传感器数据格式不兼容的问题。
总结
在本项目中,通过学习与实践 ROS 相关知识,成功实现了自动驾驶数据集的可视化。接下来,将集中精力深入学习 OSM 的使用,并着手进行 GPS 定位与搜索的小项目开发。
opencv棋盘格实现相机标定(附源码)
在理解相机标定的原理前,必须明确相机模型的四个坐标系:像素坐标系、图像坐标系、相机坐标系以及世界坐标系。像素坐标系的单位为像素,而图像坐标系则为归一化单位,具体单位(如mm或m)由深度值决定。畸变图像坐标通过相机标定得到的畸变参数校正,从而帮助理解内参矩阵与畸变系数的角色。图像坐标系与相机坐标系的转换需注意,这里的[Xc,Yc,Zc]代表物体在相机坐标系下的位置。相机坐标系与世界坐标系的转换则需理解相机位姿。
使用OpenCV实现相机标定,redis源码零基础首步是准备*7的棋盘格图像,可通过链接获取。确保从不同角度拍摄多张棋盘格图像,关键在于每张图像的角点应保持一致。不一致的图像应排除,确保图像走向一致。主要使用的OpenCV函数用于处理图像与坐标系的转换,具体函数使用可查阅相关文档。
相机标定的结果通过重投影误差评估。核心代码简化了标定过程,有效提高效率。运行结果展示了棋盘格图像与标定后的结果对比,直观展示了标定效果。项目源码在链接中提供,适用于Ubuntu .系统。使用者只需打印棋盘格,将拍摄的存储于指定文件夹,即可完成标定。
kitti数据集在3D目标检测中的入门
数据集官网下载地址:cvlibs.net/datasets/kitti。
KITTI数据集包括个训练图像和个测试图像,以及个标记对象的富源码头在哪里点云数据,用于3D目标检测。数据集包含彩色图像数据(GB)、点云数据(GB)、相机矫正数据(MB)和标签数据(5MB)。数据集通过邮箱注册获取,下载链接发送至邮箱,但下载速度较慢。此外,百度云提供下载链接:blog.csdn.net/u。
3D目标检测算法历程涉及点表示、体素表示和图表示。算法主要分为利用和激光雷达输入的F-PointNet网络,以及仅使用激光雷达点云输入的点云基和体素基方法。AP主要评估车辆检测,行人检测效果较差,因为物体与人的相似性导致误差较大。
KITTI数据集通过装配有2个灰度摄像机、2个彩色摄像机、一个Velodyne 线3D激光雷达、4个光学镜头和1个GPS导航系统的数据采集平台生成。双目立体图像通过相同类型的摄像头相距cm安装实现,彩色摄像机和灰度摄像机相距6cm安装。坐标系规定:相机:x=右,y=下,z=前进;Velodyne:x=前进,y=左,z=上;GPS/IMU:x=前进,y=左,z=上。雷达采集数据时,雷达旋转到与相机朝向一致时触发相机采集图像,已将雷达数据与相机数据对齐。
数据集包含原始数据和目标检测所需转换。从雷达坐标系变换到相机坐标系的公式涉及校准文件中提供的Tr_velo_to_cam、R_rect_和P_rect_0x矩阵。目标检测转换主要涉及从三维到二维平面的转换。
数据集包括label文件,文件中每行代表一个对象,包含物体类别、是否截断、是否被遮挡、观察角度、2D边界框大小、3D物体尺寸、位置和空间方向,以及检测置信度。development kit文件详细介绍了数据采集装置、数据格式、label等信息。
点云可视化需要顺序安装包vtk、mayavi。可视化后,点云显示与点云+检测框可视化有所不同。Kitti LIDAR点云生成鸟瞰图BEV显示3D检测框。
训练集可视化包括的2D和3D检测框以及点云的3D检测框,但不包含点云的单独可视化。使用pointRCNN源码进行预测结果可视化,包括显示LiDAR、image及两者结合,以及与真值框对比。
KITTI 3D Object Detection Evaluation结果评估程序通过下载devkit_object\cpp目录中的evaluate_object.cpp文件实现。评估步骤包括安装g++、目录结构存放标签文件、预测结果文件和结果评估文件,然后运行评估程序进行结果评估。
以上内容详细介绍了KITTI数据集在3D目标检测中的使用、数据集构成、算法历程、数据集采集、数据集介绍、点云可视化、训练集可视化以及结果评估程序,提供了对数据集和评估流程的全面理解。
相机标定之张正友标定法数学原理详解(含python源码)
探索相机标定的数学奥秘:张正友方法详解(附Python实现) 相机标定,如同解构一个复杂的光学迷宫,其核心目标在于揭示相机内部参数的神秘面纱,以及它与现实世界之间的桥梁——外参矩阵。在这个过程中,张正友标定法犹如一个精密的指南针,引领我们通过棋盘格标定板,找到内在与外在的交汇点。 理解标定原理- 相机标定的首要任务是理解相机的成像原理,包括理解相机内部的内参矩阵,它定义了镜头的几何特性,以及外参矩阵,描述了相机与三维空间的相对位置。畸变矫正则是为消除镜头对图像几何形状的扭曲影响。
张正友法的基石- 张正友方法以棋盘格标定板为关键工具,通过在不同角度拍摄的图像中识别出其角点,这些角点在世界坐标系下的坐标与像素坐标之间建立起桥梁。通过一组方程,我们求解出内外参数矩阵,从而完成标定。
解码标定步骤1. 世界坐标到像素坐标: 从至少4个标定板角点的物理坐标出发,构建齐次矩阵,为后续计算奠定基础。
2. 内参矩阵的求解: 利用至少3张的6个特征点,利用正交关系找到旋转矩阵,进而计算出内参矩阵,赋予相机清晰的几何视野。
3. 外参矩阵的揭秘: 保持内参不变,每张的外参矩阵通过相机的运动和世界坐标系的变化来计算,它们描绘了相机在空间中的运动轨迹。
4. 畸变矫正的钥匙: 仅考虑径向畸变,通过角点坐标构建方程,运用最小二乘法求得矫正参数,使图像恢复几何清晰。
张正友方法巧妙地将世界坐标系的标定板角点映射到相机坐标系,通过系数矩阵逼近畸变,但需要借助L-M算法进行优化,以减小误差。 实践与代码实际操作中,首先要拍摄多角度的棋盘格图像,然后通过特征检测提取角点,接着运用OpenCV的Python接口进行内参和外参的求解,最后利用优化算法调整畸变参数。每一步都犹如解开一个数学谜题,一步步将复杂的世界图像简化为精确的数学模型。
这就是张正友标定法的数学原理和Python实践的概览,它在相机标定领域中发挥着不可或缺的作用,帮助我们理解并掌握这个关键的图像处理技术。2025-01-23 13:09
2025-01-23 12:13
2025-01-23 11:59
2025-01-23 11:23
2025-01-23 11:01