本站提供最佳源码时代测试服务,欢迎转载和分享。

【打工网源码】【主力拉高出货源码】【2021卡牌手游源码】hadoop mapreduce源码

2024-11-14 15:21:26 来源:adl腾落指标源码 分类:百科

1.如何使用Python为Hadoop编写一个简单的MapReduce程序
2.mapreduce和hadoop的关系
3.hadoop的核心配置文件有哪些
4.Idea 开发Mapreduce遇到的问题,代码不能自动实现方法!搞了很久没搞出来,哪位大牛知道这个?
5.如何在Hadoop上编写MapReduce程序
6.Hadoop开源实现

hadoop mapreduce源码

如何使用Python为Hadoop编写一个简单的MapReduce程序

       æˆ‘们将编写一个简单的 MapReduce 程序,使用的是C-Python,而不是Jython编写后打包成jar包的程序。

       ã€€ã€€æˆ‘们的这个例子将模仿 WordCount 并使用Python来实现,例子通过读取文本文件来统计出单词的出现次数。结果也以文本形式输出,每一行包含一个单词和单词出现的次数,两者中间使用制表符来想间隔。

       ã€€ã€€å…ˆå†³æ¡ä»¶

       ã€€ã€€ç¼–写这个程序之前,你学要架设好Hadoop 集群,这样才能不会在后期工作抓瞎。如果你没有架设好,那么在后面有个简明教程来教你在Ubuntu Linux 上搭建(同样适用于其他发行版linux、unix)

       ã€€ã€€å¦‚何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立单节点的 Hadoop 集群

       ã€€ã€€å¦‚何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立多节点的 Hadoop 集群

       ã€€ã€€Python的MapReduce代码

       ã€€ã€€ä½¿ç”¨Python编写MapReduce代码的技巧就在于我们使用了 HadoopStreaming 来帮助我们在Map 和 Reduce间传递数据通过STDIN (标准输入)和STDOUT (标准输出).我们仅仅使用Python的sys.stdin来输入数据,使用sys.stdout输出数据,这样做是因为HadoopStreaming会帮我们办好其他事。这是真的,别不相信!

       ã€€ã€€Map: mapper.py

       ã€€ã€€å°†ä¸‹åˆ—的代码保存在/home/hadoop/mapper.py中,他将从STDIN读取数据并将单词成行分隔开,生成一个列表映射单词与发生次数的关系:

       ã€€ã€€æ³¨æ„ï¼šè¦ç¡®ä¿è¿™ä¸ªè„šæœ¬æœ‰è¶³å¤Ÿæƒé™ï¼ˆchmod +x /home/hadoop/mapper.py)。

       ã€€ã€€#!/usr/bin/env python

       ã€€ã€€

       ã€€ã€€import sys

       ã€€ã€€

       ã€€ã€€# input comes from STDIN (standard input)

       ã€€ã€€for line in sys.stdin:

       ã€€ã€€# remove leading and trailing whitespace

       ã€€ã€€line = line.strip()

       ã€€ã€€# split the line into words

       ã€€ã€€words = line.split()

       ã€€ã€€# increase counters

       ã€€ã€€for word in words:

       ã€€ã€€# write the results to STDOUT (standard output);

       ã€€ã€€# what we output here will be the input for the

       ã€€ã€€# Reduce step, i.e. the input for reducer.py

       ã€€ã€€#

       ã€€ã€€# tab-delimited; the trivial word count is 1

       ã€€ã€€print '%s\\t%s' % (word, 1)在这个脚本中,并不计算出单词出现的总数,它将输出 "<word> 1" 迅速地,尽管<word>可能会在输入中出现多次,计算是留给后来的Reduce步骤(或叫做程序)来实现。当然你可以改变下编码风格,完全尊重你的习惯。

       ã€€ã€€Reduce: reducer.py

       ã€€ã€€å°†ä»£ç å­˜å‚¨åœ¨/home/hadoop/reducer.py 中,这个脚本的作用是从mapper.py 的STDIN中读取结果,然后计算每个单词出现次数的总和,并输出结果到STDOUT。

       ã€€ã€€åŒæ ·ï¼Œè¦æ³¨æ„è„šæœ¬æƒé™ï¼šchmod +x /home/hadoop/reducer.py

       ã€€ã€€#!/usr/bin/env python

       ã€€ã€€

       ã€€ã€€from operator import itemgetter

       ã€€ã€€import sys

       ã€€ã€€

       ã€€ã€€# maps words to their counts

       ã€€ã€€word2count = { }

       ã€€ã€€

       ã€€ã€€# input comes from STDIN

       ã€€ã€€for line in sys.stdin:

       ã€€ã€€# remove leading and trailing whitespace

       ã€€ã€€line = line.strip()

       ã€€ã€€

       ã€€ã€€# parse the input we got from mapper.py

       ã€€ã€€word, count = line.split('\\t', 1)

       ã€€ã€€# convert count (currently a string) to int

       ã€€ã€€try:

       ã€€ã€€count = int(count)

       ã€€ã€€word2count[word] = word2count.get(word, 0) + count

       ã€€ã€€except ValueError:

       ã€€ã€€# count was not a number, so silently

       ã€€ã€€# ignore/discard this line

       ã€€ã€€pass

       ã€€ã€€

       ã€€ã€€# sort the words lexigraphically;

       ã€€ã€€#

       ã€€ã€€# this step is NOT required, we just do it so that our

       ã€€ã€€# final output will look more like the official Hadoop

       ã€€ã€€# word count examples

       ã€€ã€€sorted_word2count = sorted(word2count.items(), key=itemgetter(0))

       ã€€ã€€

       ã€€ã€€# write the results to STDOUT (standard output)

       ã€€ã€€for word, count in sorted_word2count:

       ã€€ã€€print '%s\\t%s'% (word, count)

       ã€€ã€€æµ‹è¯•ä½ çš„代码(cat data | map | sort | reduce)

       ã€€ã€€æˆ‘建议你在运行MapReduce job测试前尝试手工测试你的mapper.py 和 reducer.py脚本,以免得不到任何返回结果

       ã€€ã€€è¿™é‡Œæœ‰ä¸€äº›å»ºè®®ï¼Œå…³äºŽå¦‚何测试你的Map和Reduce的功能:

       ã€€ã€€â€”—————————————————————————————————————————————

       ã€€ã€€\r\n

       ã€€ã€€# very basic test

       ã€€ã€€hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py

       ã€€ã€€foo 1

       ã€€ã€€foo 1

       ã€€ã€€quux 1

       ã€€ã€€labs 1

       ã€€ã€€foo 1

       ã€€ã€€bar 1

       ã€€ã€€â€”—————————————————————————————————————————————

       ã€€ã€€hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py | sort | /home/hadoop/reducer.py

       ã€€ã€€bar 1

       ã€€ã€€foo 3

       ã€€ã€€labs 1

       ã€€ã€€â€”—————————————————————————————————————————————

       ã€€ã€€# using one of the ebooks as example input

       ã€€ã€€# (see below on where to get the ebooks)

       ã€€ã€€hadoop@ubuntu:~$ cat /tmp/gutenberg/-8.txt | /home/hadoop/mapper.py

       ã€€ã€€The 1

       ã€€ã€€Project 1

       ã€€ã€€Gutenberg 1

       ã€€ã€€EBook 1

       ã€€ã€€of 1

       ã€€ã€€[...]

       ã€€ã€€(you get the idea)

       ã€€ã€€quux 2

       ã€€ã€€quux 1

       ã€€ã€€â€”—————————————————————————————————————————————

       ã€€ã€€åœ¨Hadoop平台上运行Python脚本

       ã€€ã€€ä¸ºäº†è¿™ä¸ªä¾‹å­ï¼Œæˆ‘们将需要三种电子书:

       ã€€ã€€The Outline of Science, Vol. 1 (of 4) by J. Arthur Thomson\r\n

       ã€€ã€€The Notebooks of Leonardo Da Vinci\r\n

       ã€€ã€€Ulysses by James Joyce

       ã€€ã€€ä¸‹è½½ä»–们,并使用us-ascii编码存储 解压后的文件,保存在临时目录,比如/tmp/gutenberg.

       ã€€ã€€hadoop@ubuntu:~$ ls -l /tmp/gutenberg/

       ã€€ã€€total

       ã€€ã€€-rw-r--r-- 1 hadoop hadoop -- : -8.txt

       ã€€ã€€-rw-r--r-- 1 hadoop hadoop -- : 7ldvc.txt

       ã€€ã€€-rw-r--r-- 1 hadoop hadoop -- : ulyss.txt

       ã€€ã€€hadoop@ubuntu:~$

       ã€€ã€€å¤åˆ¶æœ¬åœ°æ•°æ®åˆ°HDFS

       ã€€ã€€åœ¨æˆ‘们运行MapReduce job 前,我们需要将本地的文件复制到HDFS中:

       ã€€ã€€hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -copyFromLocal /tmp/gutenberg gutenberg

       ã€€ã€€hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls

       ã€€ã€€Found 1 items

       ã€€ã€€/user/hadoop/gutenberg <dir>

       ã€€ã€€hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg

       ã€€ã€€Found 3 items

       ã€€ã€€/user/hadoop/gutenberg/-8.txt <r 1>

       ã€€ã€€/user/hadoop/gutenberg/7ldvc.txt <r 1>

       ã€€ã€€/user/hadoop/gutenberg/ulyss.txt <r 1>

       ã€€ã€€æ‰§è¡Œ MapReduce job

       ã€€ã€€çŽ°åœ¨ï¼Œä¸€åˆ‡å‡†å¤‡å°±ç»ªï¼Œæˆ‘们将在运行Python MapReduce job 在Hadoop集群上。像我上面所说的,我们使用的是

       ã€€ã€€HadoopStreaming 帮助我们传递数据在Map和Reduce间并通过STDIN和STDOUT,进行标准化输入输出。

       ã€€ã€€hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0..1-streaming.jar

       ã€€ã€€-mapper /home/hadoop/mapper.py -reducer /home/hadoop/reducer.py -input gutenberg/

*

       ã€€ã€€-output gutenberg-output

       ã€€ã€€åœ¨è¿è¡Œä¸­ï¼Œå¦‚果你想更改Hadoop的一些设置,如增加Reduce任务的数量,你可以使用“-jobconf”选项:

       ã€€ã€€hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0..1-streaming.jar

       ã€€ã€€-jobconf mapred.reduce.tasks= -mapper ...

       ã€€ã€€ä¸€ä¸ªé‡è¦çš„备忘是关于Hadoop does not honor mapred.map.tasks

       ã€€ã€€è¿™ä¸ªä»»åŠ¡å°†ä¼šè¯»å–HDFS目录下的gutenberg并处理他们,将结果存储在独立的结果文件中,并存储在HDFS目录下的

       ã€€ã€€gutenberg-output目录。

       ã€€ã€€ä¹‹å‰æ‰§è¡Œçš„结果如下:

       ã€€ã€€hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0..1-streaming.jar

       ã€€ã€€-mapper /home/hadoop/mapper.py -reducer /home/hadoop/reducer.py -input gutenberg/

*

       ã€€ã€€-output gutenberg-output

       ã€€ã€€

       ã€€ã€€additionalConfSpec_:null

       ã€€ã€€null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming

       ã€€ã€€packageJobJar: [/usr/local/hadoop-datastore/hadoop-hadoop/hadoop-unjar/]

       ã€€ã€€[] /tmp/streamjob.jar tmpDir=null

       ã€€ã€€[...] INFO mapred.FileInputFormat: Total input paths to process : 7

       ã€€ã€€[...] INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop-datastore/hadoop-hadoop/mapred/local]

       ã€€ã€€[...] INFO streaming.StreamJob: Running job: job__

       ã€€ã€€[...]

       ã€€ã€€[...] INFO streaming.StreamJob: map 0% reduce 0%

       ã€€ã€€[...] INFO streaming.StreamJob: map % reduce 0%

       ã€€ã€€[...] INFO streaming.StreamJob: map % reduce 0%

       ã€€ã€€[...] INFO streaming.StreamJob: map % reduce 0%

       ã€€ã€€[...] INFO streaming.StreamJob: map % reduce %

       ã€€ã€€[...] INFO streaming.StreamJob: map % reduce %

       ã€€ã€€[...] INFO streaming.StreamJob: map % reduce %

       ã€€ã€€[...] INFO streaming.StreamJob: map % reduce %

       ã€€ã€€[...] INFO streaming.StreamJob: Job complete: job__

       ã€€ã€€[...] INFO streaming.StreamJob: Output: gutenberg-output hadoop@ubuntu:/usr/local/hadoop$

       ã€€ã€€æ­£å¦‚你所见到的上面的输出结果,Hadoop 同时还提供了一个基本的WEB接口显示统计结果和信息。

mapreduce和hadoop的关系

       hadoop是依据mapreduce的原理,用Java语言实现的分布式处理机制。

       Hadoop是一个能够对大量数据进行分布式处理的软件框架,实现了Google的MapReduce编程模型和框架,能够把应用程序分割成许多的小的工作单元,并把这些单元放到任何集群节点上执行。

       MapReduce是Hadoop生态系统中的分布式计算框架,用于处理大规模数据集。MapReduce将数据分成多个小块,将计算任务分配到多个节点上并行处理,最后将结果汇总输出。MapReduce框架可以自动管理任务的调度、容错、负载均衡等问题,使得Hadoop可以高效地运行大规模数据处理任务。

MapReduce分布式计算框架原型:

       

       MapReduce分布式计算模型是由Google提出,主要用于搜索领域,解决海量数据的计算问题Apache对其做了开源实现,整合在hadoop中实现通用分布式数据计算。

       MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算,非常简单。大大简化了分布式并发处理程序的开发。Map阶段就是进行分段处理。Reduce阶段就是进行汇总处理。汇总之后还可以进行数据的一系列美化操作,然后再输出。

hadoop的核心配置文件有哪些

       在Hadoop 1.x版本中,核心组件包括HDFS和MapReduce。而在Hadoop 2.x及之后的打工网源码版本中,核心组件更新为HDFS、Yarn,并且引入了High Availability(高可用性)的概念,允许存在多个NameNode,每个NameNode都具备相同的职能。

       以下是关键的Hadoop配置文件及其作用概述:

       1. `hadoop-env.sh`:

        - 主要设置JDK的安装路径,例如:`export JAVA_HOME=/usr/local/jdk`

       2. `core-site.xml`:

        - `fs.defaultFS`:指定HDFS的默认名称节点地址,例如:`hdfs://cluster1`

        - `hadoop.tmp.dir`:默认的临时文件存储路径,例如:`/export/data/hadoop_tmp`

        - `ha.zookeeper.quorum`:ZooKeeper集群的地址和端口,例如:`hadoop:,hadoop:,hadoop:`

        - `hadoop.proxyuser.erpmerge.hosts` 和 `hadoop.proxyuser.erpmerge.groups`:用于设置特定用户(如oozie)的代理权限

       请注意,配置文件中的主力拉高出货源码路径和地址需要根据实际环境进行相应的修改。

Idea 开发Mapreduce遇到的问题,代码不能自动实现方法!搞了很久没搞出来,哪位大牛知道这个?

       项目配置 File ---- Project Structure

       1. SDK的配置

       2. 加入Hadoop的jar包依赖

       3.打包配置

       4.开发map-reduce代码

       <span style="font-size:px;">import java.io.IOException;

       import org.apache.hadoop.conf.Configuration;

       import org.apache.hadoop.fs.Path;

       import org.apache.hadoop.io.Text;

       import org.apache.hadoop.mapreduce.Job;

       import org.apache.hadoop.mapreduce.Mapper;

       import org.apache.hadoop.mapreduce.Reducer;

       import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

       import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

       import org.apache.hadoop.util.GenericOptionsParser;

       public class Dedup {

       //map将输入中的value复制到输出数据的key上,并直接输出

       public static class Map extends Mapper<Object,Text,Text,Text>{

       private static Text line=new Text();//每行数据

       //实现map函数

       public void map(Object key,Text value,Context context)

       throws IOException,InterruptedException{

       line=value;

       context.write(line, new Text(""));

       }

       }

       //reduce将输入中的key复制到输出数据的key上,并直接输出

       public static class Reduce extends Reducer<Text,Text,Text,Text>{

       //实现reduce函数

       public void reduce(Text key,Iterable<Text> values,Context context)

       throws IOException,InterruptedException{

       context.write(key, new Text(""));

       }

       }

       public static void main(String[] args) throws Exception{

       Configuration conf = new Configuration();

       String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

       Job job = new Job(conf, "Data Deduplication");

       job.setJarByClass(Dedup.class);

       //设置Map、Combine和Reduce处理类

       job.setMapperClass(Map.class);

       job.setCombinerClass(Reduce.class);

       job.setReducerClass(Reduce.class);

       //设置输出类型

       job.setOutputKeyClass(Text.class);

       job.setOutputValueClass(Text.class);

       //设置输入和输出目录

       FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

       FileOutputForwww.cdxcxgs.com#tOutputPath(job, new Path(otherArgs[1]));

       System.exit(job.waitForCompletion(true) ? 0 : 1);

       }

       }</span>

       5.配置编译器

如何在Hadoop上编写MapReduce程序

       ã€€ã€€1. 概述

       ã€€ã€€å¹´ï¼ŒIBM的研究员E.F.Codd博士在刊物《Communication of the ACM》上发表了一篇名为“A Relational Model of Data for Large Shared Data Banks”的论文,提出了关系模型的概念,标志着关系数据库的诞生,随后几十年,关系数据库及其结构化查询语言SQL成为程序员必须掌握的基本技能之一。

       ã€€ã€€å¹´4月,Jeffrey Dean和Sanjay Ghemawat在国际会议OSDI上发表“MapReduce: Simplified Data Processing on Large Cluster”,标志着google的大规模数据处理系统MapReduce公开。受这篇论文的启发,当年秋天,Hadoop 由 Apache Software Foundation 公司作为 Lucene 的子项目 Nutch 的一部分正式被引入, å¹´ 3 月份,MapReduce 和 Nutch Distributed File System (NDFS) 分别被纳入称为 Hadoop 的项目中。如今,Hadoop已经被超过%的互联网公司使用,其他很多公司正准备使用Hadoop来处理海量数据,随着Hadoop越来越受欢迎,也许在将来的某段时间,Hadoop会成为程序员必须掌握的技能之一,如果真是这样的话,学会如何在Hadoop上编写MapReduce程序便是学习Hadoop的开始。

       ã€€ã€€æœ¬æ–‡ä»‹ç»äº†åœ¨Hadoop上编写MapReduce程序的基本方法,包括MapReduce程序的构成,不同语言开发MapReduce的方法等。

       ã€€ã€€2. Hadoop 作业构成

       ã€€ã€€2.1 Hadoop作业执行流程

       ã€€ã€€ç”¨æˆ·é…ç½®å¹¶å°†ä¸€ä¸ªHadoop作业提到Hadoop框架中,Hadoop框架会把这个作业分解成一系列map tasks 和reduce tasks。Hadoop框架负责task分发和执行,结果收集和作业进度监控。

       ã€€ã€€ä¸‹å›¾ç»™å‡ºäº†ä¸€ä¸ªä½œä¸šä»Žå¼€å§‹æ‰§è¡Œåˆ°ç»“束所经历的阶段和每个阶段被谁控制(用户 or Hadoop框架)。

       ã€€ã€€ä¸‹å›¾è¯¦ç»†ç»™å‡ºäº†ç”¨æˆ·ç¼–写MapRedue作业时需要进行那些工作以及Hadoop框架自动完成的工作:

       ã€€ã€€åœ¨ç¼–写MapReduce程序时,用户分别通过InputFormat和OutputFormat指定输入和输出格式,并定义Mapper和Reducer指定map阶段和reduce阶段的要做的工作。在Mapper或者Reducer中,用户只需指定一对key/value的处理逻辑,Hadoop框架会自动顺序迭代解析所有key/value,并将每对key/value交给Mapper或者Reducer处理。表面上看来,Hadoop限定数据格式必须为key/value形式,过于简单,很难解决复杂问题,实际上,可以通过组合的方法使key或者value(比如在key或者value中保存多个字段,每个字段用分隔符分开,或者value是个序列化后的对象,在Mapper中使用时,将其反序列化等)保存多重信息,以解决输入格式较复杂的应用。

       ã€€ã€€2.2 用户的工作

       ã€€ã€€ç”¨æˆ·ç¼–写MapReduce需要实现的类或者方法有:

       ã€€ã€€ï¼ˆ1) InputFormat接口

       ã€€ã€€ç”¨æˆ·éœ€è¦å®žçŽ°è¯¥æŽ¥å£ä»¥æŒ‡å®šè¾“入文件的内容格式。该接口有两个方法

       ã€€ã€€1

       ã€€ã€€2

       ã€€ã€€3

       ã€€ã€€4

       ã€€ã€€5

       ã€€ã€€6

       ã€€ã€€7

       ã€€ã€€8

       ã€€ã€€9

       ã€€ã€€

       ã€€ã€€

       ã€€ã€€

       ã€€ã€€public interface InputFormat<K, V> {

       ã€€ã€€

       ã€€ã€€InputSplit[] getSplits(JobConf job, int numSplits) throws IOException;

       ã€€ã€€

       ã€€ã€€RecordReader<K, V> getRecordReader(InputSplit split,

       ã€€ã€€

       ã€€ã€€JobConf job,

       ã€€ã€€

       ã€€ã€€Reporter reporter) throws IOException;

       ã€€ã€€

       ã€€ã€€}

       ã€€ã€€

       ã€€ã€€å…¶ä¸­getSplits函数将所有输入数据分成numSplits个split,每个split交给一个map task处理。getRecordReader函数提供一个用户解析split的迭代器对象,它将split中的每个record解析成key/value对。

       ã€€ã€€Hadoop本身提供了一些InputFormat:

       ã€€ã€€ï¼ˆ2)Mapper接口

       ã€€ã€€ç”¨æˆ·éœ€ç»§æ‰¿Mapper接口实现自己的Mapper,Mapper中必须实现的函数是

       ã€€ã€€1

       ã€€ã€€2

       ã€€ã€€3

       ã€€ã€€4

       ã€€ã€€5

       ã€€ã€€6

       ã€€ã€€7

       ã€€ã€€8

       ã€€ã€€9

       ã€€ã€€

       ã€€ã€€void map(K1 key,

       ã€€ã€€

       ã€€ã€€V1 value,

       ã€€ã€€

       ã€€ã€€OutputCollector<K2,V2> output,

       ã€€ã€€

       ã€€ã€€Reporter reporter

       ã€€ã€€

       ã€€ã€€) throws IOException

       ã€€ã€€

       ã€€ã€€å…¶ä¸­ï¼Œ<K1 V1>是通过Inputformat中的RecordReader对象解析处理 的,OutputCollector获取map()的输出结果,Reporter保存了当前task处理进度。

       ã€€ã€€Hadoop本身提供了一些Mapper供用户使用:

       ã€€ã€€ï¼ˆ3)Partitioner接口

       ã€€ã€€ç”¨æˆ·éœ€ç»§æ‰¿è¯¥æŽ¥å£å®žçŽ°è‡ªå·±çš„Partitioner以指定map task产生的key/value对交给哪个reduce task处理,好的Partitioner能让每个reduce task处理的数据相近,从而达到负载均衡。Partitioner中需实现的函数是

       ã€€ã€€getPartition( K2 key, V2 value, int numPartitions)

       ã€€ã€€è¯¥å‡½æ•°è¿”回<K2 V2>对应的reduce task ID。

       ã€€ã€€ç”¨æˆ·å¦‚果不提供Partitioner,Hadoop会使用默认的(实际上是个hash函数)。

       ã€€ã€€ï¼ˆ4)Combiner

       ã€€ã€€Combiner使得map task与reduce task之间的数据传输量大大减小,可明显提高性能。大多数情况下,Combiner与Reducer相同。

       ã€€ã€€ï¼ˆ5)Reducer接口

       ã€€ã€€ç”¨æˆ·éœ€ç»§æ‰¿Reducer接口实现自己的Reducer,Reducer中必须实现的函数是

       ã€€ã€€1

       ã€€ã€€2

       ã€€ã€€3

       ã€€ã€€4

       ã€€ã€€5

       ã€€ã€€6

       ã€€ã€€7

       ã€€ã€€8

       ã€€ã€€9

       ã€€ã€€

       ã€€ã€€void reduce(K2 key,

       ã€€ã€€

       ã€€ã€€Iterator<V2> values,

       ã€€ã€€

       ã€€ã€€OutputCollector<K3,V3> output,

       ã€€ã€€

       ã€€ã€€Reporter reporter

       ã€€ã€€

       ã€€ã€€) throws IOException

       ã€€ã€€

       ã€€ã€€Hadoop本身提供了一些Reducer供用户使用:

       ã€€ã€€ï¼ˆ6)OutputFormat

       ã€€ã€€ç”¨æˆ·é€šè¿‡OutputFormat指定输出文件的内容格式,不过它没有split。每个reduce task将其数据写入自己的文件,文件名为part-nnnnn,其中nnnnn为reduce task的ID。

       ã€€ã€€Hadoop本身提供了几个OutputFormat:

       ã€€ã€€3. 分布式缓存

       ã€€ã€€Haoop中自带了一个分布式缓存,即DistributedCache对象,方便map task之间或者reduce task之间共享一些信息,比如某些实际应用中,所有map task要读取同一个配置文件或者字典,则可将该配置文件或者字典放到分布式缓存中。

       ã€€ã€€4. 多语言编写MapReduce作业

       ã€€ã€€Hadoop采用java编写,因而Hadoop天生支持java语言编写作业,但在实际应用中,有时候,因要用到非java的第三方库或者其他原因,要采用C/C++或者其他语言编写MapReduce作业,这时候可能要用到Hadoop提供的一些工具。

       ã€€ã€€å¦‚果你要用C/C++编写MpaReduce作业,可使用的工具有Hadoop Streaming或者Hadoop Pipes。

       ã€€ã€€å¦‚果你要用Python编写MapReduce作业,可以使用Hadoop Streaming或者Pydoop。

       ã€€ã€€å¦‚果你要使用其他语言,如shell,php,ruby等,可使用Hadoop Streaming。

       ã€€ã€€å…³äºŽHadoop Streaming编程,可参见我的这篇博文:《Hadoop Streaming编程》(/projects/pydoop/

       ã€€ã€€å…³äºŽHadoop pipes编程,可参见《Hadoop Tutorial 2.2 — Running C++ Programs on Hadoop》。

       ã€€ã€€5. 编程方式比较

       ã€€ã€€ï¼ˆ1)java。 Hadoop支持的最好最全面的语言,而且提供了很多工具方便程序员开发。

       ã€€ã€€ï¼ˆ2)Hadoop Streaming。 它最大的优点是支持多种语言,但效率较低,reduce task需等到map 阶段完成后才能启动;它不支持用户自定义InputFormat,如果用户想指定输入文件格式,可使用java语言编写或者在命令行中指定分隔符;它采用标准输入输出让C/C++与java通信,因而只支持text数据格式。

       ã€€ã€€ï¼ˆ3)Hadoop Pipes。 专门为C/C++语言设计,由于其采用了socket方式让C/C++与java通信,因而其效率较低(其优势在于,但作业需要大量,速度很快)。它支持用户(用C/C++)编写RecordReader。

       ã€€ã€€ï¼ˆ4)Pydoop。它是专门方便python程序员编写MapReduce作业设计的,其底层使用了Hadoop Streaming接口和libhdfs库。

       ã€€ã€€6. 总结

       ã€€ã€€Hadoop使得分布式程序的编写变得异常简单,很多情况下,用户只需写map()和reduce()两个函数即可(InputFormat,Outputformat可用系统缺省的)。正是由于Hadoop编程的简单性,越来越多的公司或者研究单位开始使用Hadoop。

Hadoop开源实现

       Hadoop是一个开源的项目,主要由HDFS和MapReduce两个核心组件构成。2021卡牌手游源码HDFS是Google File System(GFS)的开源版本,提供了一个分布式文件系统,用于高效存储和管理海量数据。NameNode和DataNode是HDFS的关键角色,NameNode作为唯一的服务节点,负责管理文件系统元数据,而DataNode则是数据存储节点,用户通过NameNode与之交互,转卡跑分平台源码实现透明的数据存取,其操作与普通文件系统API并无二致。

       MapReduce则是Google MapReduce的开源实现,主要由JobTracker节点负责任务分配和用户程序的通信。用户通过继承MapReduceBase,实现Map和Reduce功能,注册Job后,Hadoop将自动进行分布式执行。华为云上哪里看源码HDFS和MapReduce是独立工作的,用户可以在没有HDFS的情况下使用MapReduce进行运算。

       Hadoop与云计算项目的目标相似,即处理大规模数据的计算。为了支持这种计算,它引入了Hadoop分布式文件系统(HDFS),作为一个稳定且安全的数据容器。HDFS的通信部分主要依赖org.apache.hadoop.ipc提供的RPC服务,用户需要自定义实现数据读写和NameNode/DataNode之间的通信。

       MapReduce的核心实现位于org.apache.hadoop.mapred包中,用户需要实现接口类并管理节点通信,即可进行MapReduce计算。Hadoop的发音为[hædu:p]。

       最新发布的版本是2.0.2,Hadoop为开发者提供了强大而灵活的工具,支持Fedora、Ubuntu等Linux平台,广泛应用于数据分析领域,由Hortonworks公司负责后续开发工作,确保了项目的持续发展和创新。

扩展资料

       一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以流的形式访问(streaming access)文件系统中的数据。

【本文网址:http://8o.net.cn/news/39c47599485.html 欢迎转载】

copyright © 2016 powered by 皮皮网   sitemap