【搜索源码】【源码铺子源码】【bae源码】idea 查看spark源码_idea查看spring源码

时间:2024-11-14 14:58:42 来源:海外购物源码 编辑:下拉框源码

1.Ubuntu 18.04-0003-安装 intellij idea 社区版 2022.1.3
2.如何在Mac使用Intellij idea搭建远程Hadoop开发环境
3.用Intellij idea 编写Scala程序Spark2.0.0 依赖jar包如何解决
4.Spark第一个程序,查看a查WordCount
5.IntelliJ-IDEA-Maven-Scala-Spark开发环境搭建

idea 查看spark源码_idea查看spring源码

Ubuntu 18.04-0003-安装 intellij idea 社区版 2022.1.3

       已经成功安装了佳娃和斯卡拉开发环境,源g源现在转向安装IntelliJ IDEA社区版.1.3。码i码这个系列文章包括:

       Ubuntu .-:从虚机安装

       Ubuntu .-:基础设置

       以下是查看a查详细的安装步骤:

       1. 安装IntelliJ IDEA社区版

       首先,安装非官方PPA源,源g源然后更新系统,码i码搜索源码接着安装ideaIC-.1.3版本。查看a查

       2. 运行IntelliJ IDEA社区版

       通过Command键搜索并启动IntelliJ,源g源接受用户条款,码i码选择数据分享设置(可以选择不发送或匿名发送统计信息)。查看a查

       3. 安装斯卡拉插件

       在新项目中,源g源点击语言添加选项,码i码选择斯卡拉并安装插件,查看a查完成后重启IntelliJ IDEA。源g源

       4. 配置环境

       新项目中,码i码源码铺子源码JDK为1.8,sbt为1.6.2,Scala为2..8。

       5. 后续计划

       已经成功完成Ubuntu .上IntelliJ IDEA社区版的安装,并设置了斯卡拉开发环境。接下来的教程将探讨如何使用斯卡拉编写Spark项目。

如何在Mac使用Intellij idea搭建远程Hadoop开发环境

       (1)准备工作

       1)

       安装JDK

       6或者JDK

       7

       2)

       安装scala

       2..x

       (注意版本)

       2)下载Intellij

       IDEA最新版(本文以IntelliJ

       IDEA

       Community

       Edition

       .1.1为例说明,不同版本,界面布局可能不同)

       3)将下载的Intellij

       IDEA解压后,安装scala插件,流程如下:

       依次选择“Configure”–>

       “Plugins”–>

       “Browse

       repositories”,输入scala,然后安装即可

       (2)搭建Spark源码阅读环境(需要联网)

       一种方法是直接依次选择“import

       project”–>

       选择spark所在目录

       –>

       “SBT”,之后intellij会自动识别SBT文件,bae源码并下载依赖的外部jar包,整个流程用时非常长,取决于机器的网络环境(不建议在windows

       下操作,可能遇到各种问题),一般需花费几十分钟到几个小时。注意,下载过程会用到git,因此应该事先安装了git。

       第二种方法是首先在linux操作系统上生成intellij项目文件,然后在intellij

       IDEA中直接通过“Open

       Project”打开项目即可。在linux上生成intellij项目文件的方法(需要安装git,不需要安装scala,sbt会自动下载)是:在

       spark源代码根目录下,输入sbt/sbt

       gen-idea

       注:如果你在windows下阅读源代码,osg源码建议先在linux下生成项目文件,然后导入到windows中的intellij

       IDEA中。

       (3)搭建Spark开发环境

       在intellij

       IDEA中创建scala

       project,并依次选择“File”–>

       “project

       structure”

       –>

       “Libraries”,选择“+”,将spark-hadoop

       对应的包导入,比如导入spark-assembly_2.-0.9.0-incubating-hadoop2.2.0.jar(只需导入该jar

       包,其他不需要),如果IDE没有识别scala

       库,则需要以同样方式将scala库导入。之后开发scala程序即可:

       编写完scala程序后,可以直接在intellij中,以local模式运行,方法如下:

       点击“Run”–>

       “Run

       Configurations”,wke源码在弹出的框中对应栏中填写“local”,表示将该参数传递给main函数,如下图所示,之后点击“Run”–>

       “Run”运行程序即可。

       如果想把程序打成jar包,通过命令行的形式运行在spark

       集群中,可以按照以下步骤操作:

       依次选择“File”–>

       “Project

       Structure”

       –>

       “Artifact”,选择“+”–>

       “Jar”

       –>

       “From

       Modules

       with

       dependencies”,选择main函数,并在弹出框中选择输出jar位置,并选择“OK”。

       最后依次选择“Build”–>

       “Build

       Artifact”编译生成jar包。

用Intellij idea 编写Scala程序Spark2.0.0 依赖jar包如何解决

       åœ¨â€œFile|Project Structure|Libraries”窗体中点击绿色+号,选择“Java”,在弹出的窗体中选择“Spark”的安装目录,定位到Spark\jars目录,点击“OK”,把全部jar文件引入到项目中。网上和目前出版的书中讲解是spark2.0以下版本,采用的是把sparkle核心文件(如:“spark-assembly-1.3.0-hadoop2.4.0.jar”)拷贝到Interllij IDEA安装目录下的Lib目录下,再使用Spark。由于Spark2.1.0已经取消了该文件,因此无法用原先的方法。

Spark第一个程序,WordCount

       1、环境准备:idea,jdk,scala,请参考相关文章

       2、创建一个新的maven项目

       3、在项目中添加必要的依赖关系

       4、在项目根目录下创建名为“datas”的文件夹,并在该文件夹中创建两个文本文件“1.txt”和“2.txt”,分别写入相应的数据

       5、在maven项目文件夹上右击,选择添加Scala支持

       6、在Java目录下创建一个名为“WordCount.scala”的Scala文件,文件内容如下

       7、执行程序后,结果如下:大功告成!o(╯□╰)o

IntelliJ-IDEA-Maven-Scala-Spark开发环境搭建

       首先,你需要从官方网站下载并安装Java Development Kit (JDK)。确保安装完成后,检查环境变量是否配置正确。接着,转向Scala,从其官方网站下载并安装最新版本。安装完成后,你可以在IntelliJ IDEA中寻找Scala插件,进行安装以支持Scala开发。

       在IntelliJ IDEA中,启动新项目,跟随向导创建一个Maven项目。在向导中,你需要填写项目的基本信息,包括项目名称和版本号。下一步,进入项目的pom.xml文件,这里你可以自定义Maven的依赖项和版本,比如添加对Scala的支持。

       删除pom.xml中默认生成的代码,然后动手编写你自己的Hello World程序。这是展示Scala功能的良好起点。记得保存并整理你的代码结构。

       编译完成后,你需要定义打包命令,这将生成可部署的项目包。根据你的需求,可以选择合适的打包选项,比如运行`mvn clean package`命令来执行这个过程。

       为了测试你的项目,你可以选择将打包后的文件上传到测试环境,或者在本地运行。这样,你可以验证Scala、Maven和Spark集成环境是否已经配置妥当。

       以上步骤由Yezhiwei撰写,他在他的博客 IntelliJ-IDEA-Maven-Scala-Spark开发环境搭建-Yezhiwei的博客 | Yezhiwei Blog 上分享了这些经验。请注意,所有内容均来源于网络,版权归属原作者,如遇到问题,请直接与他们联系获取帮助。感谢阅读!

copyright © 2016 powered by 皮皮网   sitemap