【讯联溯源防伪源码】【如何查看微信网页源码】【手游免费开源源码】内存遍历工具 源码_内存遍历工具源码

2025-01-28 03:31:03 来源:fifa辅助源码 分类:百科

1.Android C/C++ 内存泄漏分析 unreachable
2.易语言怎样写植物大战僵尸(含源码)
3.TiDB 源码阅读(十五) Sort Merge Join
4.PyTorch 源码解读之 torch.utils.data:解析数据处理全流程
5.C# 对内存的读取
6.教你阅读 Cpython 的内存内存源码(一)

内存遍历工具 源码_内存遍历工具源码

Android C/C++ 内存泄漏分析 unreachable

       在追求客户端稳定性的持续努力中,内存质量已经成为关键因素之一。遍历遍历为此,工具工具淘宝实施了全面的源码源码内存治理计划,成立了专门的内存内存内存专项小组。本文着重介绍内存专项工具——内存泄漏分析工具memunreachable,遍历遍历讯联溯源防伪源码它在C/C++内存管理中的工具工具重要角色。

       内存泄漏,源码源码即程序中动态分配的内存内存内存未能被释放,导致系统资源浪费,遍历遍历可能引发性能下降甚至系统崩溃。工具工具C/C++环境中,源码源码由于难以精确追踪未被引用的内存内存对象,内存泄漏检测成为技术挑战。遍历遍历现有的工具工具内存检测工具,如libmemunreachable、kmemleak和llvm leaksanitizer,依赖于记录分配信息来查找问题。

       Android的libmemunreachable是无开销的本地内存检测器,它通过“标记-清除”算法遍历所有内存,标记无法访问的区域为潜在泄漏。然而,目前libmemunreachable仅在Debug配置下可用,对淘宝的Release包支持有限。本文将解析libmemunreachable的工作原理,以及淘宝如何通过修改源码,解决在Release包环境下使用的问题,以支持线上内存泄漏的定位和排查。

       libmemunreachable基于C/C++内存模型,利用栈、全局/静态存储区作为GC Root节点,判断堆内存是否被引用。它通过标记和清除机制,报告出那些未被GC根节点直接或间接持有的内存块。分析过程包括一系列关键函数,如CaptureThreads、CaptureThreadInfo等。如何查看微信网页源码

       针对Android 后权限变化带来的问题,淘宝重新编译了libmemunreachable,并调整权限配置,确保在Release包下正确获取内存信息。同时,修复了ptrace在Release包下的问题,以保证unreachable的正常运行。然而,特定的内存引用方式,如base+offset,可能导致误报,因为堆和.bss中的Base和offset与实际内存A的关联可能不直接,从而产生误判。

       以上是关于libmemunreachable的分析和在淘宝环境中的应用与改进,帮助提升内存治理的效率和准确性。请参阅相关文档以获取更多信息。

易语言怎样写植物大战僵尸(含源码)

       在使用易语言编写植物大战僵尸的辅助工具时,关键步骤涉及内存操作和地址查找。首先,通过游戏内存遍历找到阳光值的基地址和偏移,这需要在游戏进程下使用内存分析工具CE,如4字节搜索来定位的地址。

       接着,要实时追踪阳光地址的变化,设置内存写入断点。在汇编指令中,通过分析add [eax+], ecx的代码,确定一级偏移为,继续寻找EAX的值。之后,使用十六进制搜索和经验挑选出可能的基地址,如前缀不重复的地址,如AC和FE7E。

       在找到可能的基地址后,通过添加指针并读取数据验证,如动态地址的手游免费开源源码计算公式:A9EC0 + + 。一旦确认正确,阳光数值在游戏和CE工具中应显示一致,表明辅助工具已经成功生成。

       在易语言中,创建窗口应用并集成内存读写模块是实现辅助的核心步骤,通过绘制界面并编写读写代码来测试。最后,将这些代码整合,生成的作弊器即可用于游戏。相比VC++,易语言提供了更为便捷的开发体验。

       以上是利用易语言编写植物大战僵尸辅助的基本过程,源码和详细教程可以在相关博客cnblogs.com/LyShark/p/1...找到。

TiDB 源码阅读(十五) Sort Merge Join

       什么是 Sort Merge Join (SMJ):

       Sort Merge Join 是一种数据库查询优化技术。它先对两个表进行排序,然后按照连接属性归并数据,最后得到结果。当连接列为索引列时,可以避免排序带来的消耗,通常在查询优化器中选择使用 SMJ。

       TiDB Sort Merge Join 实现:

       TiDB 实现了 Sort Merge Join 算子,其核心代码位于 tidb/executor/merge_join.go 文件中的 MergeJoinExec.NextChunk。以下步骤描述了 SMJ 的执行过程:

       顺序读取外表,直到出现不同的连接键值,将相同键值的行放入数组 a1;读取内表,将相同键值的行放入数组 a2。

       从 a1 中读取当前第一行,设为 v1;从 a2 中读取当前第一行,设为 v2。

       根据连接键比较 v1 和 v2,结果分为几种情况:若 v1 等于 v2,将这两行数据加入结果集;若 v1 不等于 v2,选择更小的键值的行进行比较,直至找到相等的键值。

       重复步骤 1-3 直至内外表数据遍历完成。

       读取内外表数据:

       MergeSortExec 算子通过迭代器 readerIterator 顺序读取数据。缩量涨选股源码readerIterator 支持逐 Chunk 读取数据,且在此过程中可能进行过滤操作,以满足特定条件。例如,对于 SELECT * FROM t1 LEFT OUTER JOIN t2 ON t1.a=;语句,过滤条件为 t1.a=,未通过过滤的行会被发送至 resultGenerator,由 join 类型决定是否输出。

       Merge-Join 实现:

       MergeJoinExec.joinToChunk 函数实现了 Merge-Join 的逻辑,对内外表迭代器的当前数据根据连接键进行对比。对比结果分以下几种情况:若连接键相等,加入结果集;若不相等,选择较小键值的行进行比较,直至找到相等键值,重复此过程直至内外表数据遍历完成。

       TiDB 对 Sort Merge Join 的优化:

       在最新 master 分支中,TiDB 优化了 Sort Merge Join 的内存使用,避免了一次性读取大量相同的键值对,降低了内存 OOM 的风险。未来,TiDB 还将在 Merge-Join 方面进行更多优化,如采用多路归并和外部内存存储中间结果等,敬请期待。

PyTorch 源码解读之 torch.utils.data:解析数据处理全流程

       文@

       目录

       0 前言

       1 Dataset

       1.1 Map-style dataset

       1.2 Iterable-style dataset

       1.3 其他 dataset

       2 Sampler

       3 DataLoader

       3.1 三者关系 (Dataset, Sampler, Dataloader)

       3.2 批处理

       3.2.1 自动批处理(默认)

       3.2.2 关闭自动批处理

       3.2.3 collate_fn

       3.3 多进程处理 (multi-process)

       4 单进程

       5 多进程

       6 锁页内存 (Memory Pinning)

       7 预取 (prefetch)

       8 代码讲解

       0 前言

       本文以 PyTorch 1.7 版本为例,解析 torch.utils.data 模块在数据处理流程中的应用。

       理解 Python 中的迭代器是解读 PyTorch 数据处理逻辑的关键。Dataset、Sampler 和 DataLoader 三者共同构建数据处理流程。

       迭代器通过实现 __iter__() 和 __next__() 方法,支持数据的循环访问。Dataset 提供数据获取接口,Sampler 控制遍历顺序,DataLoader 负责加载和批处理数据。

       1 Dataset

       Dataset 包括 Map-style 和 Iterable-style 两种,分别用于索引访问和迭代访问数据。

       Map-style dataset 通过实现 __getitem__() 和 __len__() 方法,通达信kdj公式源码支持通过索引获取数据。

       Iterable-style dataset 实现 __iter__() 方法,适用于随机访问且批次大小依赖于获取数据的场景。

       2 Sampler

       Sampler 用于定义数据遍历的顺序,支持用户自定义和 PyTorch 提供的内置实现。

       3 DataLoader

       DataLoader 是数据加载的核心,支持 Map-style 和 Iterable-style Dataset,提供单多进程处理和批处理等功能。

       通过参数配置,如 batch_size、drop_last、collate_fn 等,DataLoader 实现了数据的自动和手动批处理。

       4 批处理

       3.2.1 自动批处理(默认)

       DataLoader 默认使用自动批处理,通过参数控制批次生成和样本整理。

       3.2.2 关闭自动批处理

       关闭自动批处理,允许用户自定义批处理逻辑或处理单个样本。

       3.2.3 collate_fn

       collate_fn 是手动批处理时的关键,用于整理单个样本为批次。

       5 多进程

       多进程处理通过 num_workers 参数启用,加速数据加载。

       6 单进程

       单进程模式下,数据加载可能影响计算流程,适用于数据量小且无需多进程的场景。

       7 锁页内存 (Memory Pinning)

       Memory Pinning 技术确保数据在 GPU 加速过程中快速传输,提高性能。

       8 代码讲解

       通过具体代码分析,展示了 DataLoader 的初始化、迭代和数据获取过程,涉及迭代器、Sampler 和 Dataset 的交互。

C# 对内存的读取

       è¿™ä¸ªä¸æ˜¯é‚£ä¹ˆå®¹æ˜“的,首先肯定需要用到Windows API的相关功能

       èŽ·å¾—进程的句柄后,就能获得这个进程的起始内存地址

       ç„¶åŽå°±ç”¨æŒ‡é’ˆå¯¹è¿™ä¸ªåœ°å€ä¸æ–­çš„+1去遍历内存地址上的值吧

       å¦‚果是WINFORM的程序,可以通过获得子窗口句柄来减少扫描的范围吧

教你阅读 Cpython 的源码(一)

       目录

1. CPython 介绍

       在Python使用中,你是否曾好奇字典查找为何比列表遍历快?生成器如何记忆变量状态?Cpython,作为流行版本,其源代码为何选择C和Python编写?Python规范,内存管理,这里一一揭示。

       文章将深入探讨Cpython的内部结构,分为五部分:编译过程、解释器进程、编译器和执行循环、对象系统、以及标准库。了解Cpython如何工作,从源代码下载、编译设置,到Python模块和C模块的使用,让你对Python核心概念有更深理解。

       2. Python 解释器进程

       学习过程包括配置环境、文件读取、词法句法解析,直至抽象语法树。理解这些步骤,有助于你构建和调试Python代码。

       3. Cpython 编译与执行

       了解编译过程如何将Python代码转换为可执行的中间语言,以及字节码的缓存机制,将帮助你认识Python的编译性质。

       4. Cpython 中的对象

       从基础类型如布尔和整数,到生成器,深入剖析对象类型及其内存管理,让你掌握Python数据结构的核心。

       5. Cpython 标准库

       Python模块和C模块的交互,以及如何进行自定义C版本的安装,这些都是Cpython实用性的体现。

       6. 源代码深度解析

       从源代码的细节中,你会发现编译器的工作原理,以及Python语言规范和tokenizer的重要性,以及内存管理机制,如引用计数和垃圾回收。

       通过本文,你将逐步揭开Cpython的神秘面纱,成为Python编程的高手。继续深入学习,提升你的Python技能。

       最后:结论

       第一部分概述了源代码、编译和Python规范,后续章节将逐步深入,让你在实践中掌握Cpython的核心原理。

       更多Python技术,持续关注我们的公众号:python学习开发。

BoltDB源码解析(一)使用简介

       BoltDB是一个纯Go语言实现的key value存储,提供库形式而非独立server进程。它是一个简单的存储系统,不支持SQL,但用户可以通过Bolt的API对key value进行增删查改。

       使用BoltDB只需一个文件作为DB的持久化文件。与一般数据库不同,Bolt没有单独的日志文件,也不像LevelDB那样需要创建多个文件并执行Compaction。Bolt以mmap内存映射的方式打开DB文件,增删查改操作直接在内存中进行,操作系统负责磁盘和内存之间的数据传输。

       Bolt支持Bucket概念,可以理解为namespace,用于分类组织不同类别的数据。用户可以创建多个Bucket来组织数据,例如在电商网站中,可以将users、orders、items数据分别放入不同的Bucket。

       以下是一个示例程序,展示了BoltDB的常规操作:

       bolt.Open用于传入要使用的DB文件参数,并返回一个db实例。db.Close用于关闭数据库。

       db.Update的入参是一个function,这是Bolt支持transaction的方式。db.View的入参也是一个function,但transaction只能是只读的。

       CreateBucketIfNotExists根据名称打开或创建Bucket。

       bucket.Put(key, value)将一对key value写入Bucket,若key已存在,则用新value替换旧value。

       val := bucket.Get(key)返回key对应的value,若key不存在,则返回nil。

       Bolt还支持Cursor概念,用于按照key顺序遍历DB。Cursor支持prefix scan和range scan,具体介绍可参考Bolt的README。

       可能有同学疑惑,Bolt似乎只能存储string类型数据,如何存储结构化数据?实际上,Bolt不关心value的结构,将其视为字节序列。我们可以将结构化数据序列化为字节序列存储在Bolt中,使用时再反序列化为结构。Go语言中的序列化反序列化方法(如JSON、Gob、Protobuffers等)均可用于此。

       Bolt的基本使用介绍到此,接下来将进行源码解析。

mimikatz源码分析-lsadump模块(注册表)

       mimikatz是一款内网渗透中的强大工具,本文将深入分析其lsadump模块中的sam部分,探索如何从注册表获取用户哈希。

       首先,简要了解一下Windows注册表hive文件的结构。hive文件结构类似于PE文件,包括文件头和多个节区,每个节区又有节区头和巢室。其中,巢箱由HBASE_BLOCK表示,巢室由BIN和CELL表示,整体结构被称为“储巢”。通过分析hive文件的结构图,可以更直观地理解其内部组织。

       在解析过程中,需要关注的关键部分包括块的签名(regf)和节区的签名(hbin)。这些签名对于定位和解析注册表中的数据至关重要。

       接下来,深入解析mimikatz的解析流程。在具备sam文件和system文件的情况下,主要分为以下步骤:获取注册表system的句柄、读取计算机名和解密密钥、获取注册表sam的句柄以及读取用户名和用户哈希。若无sam文件和system文件,mimikatz将直接通过官方API读取本地机器的注册表。

       在mimikatz中,会定义几个关键结构体,包括用于标识操作的注册表对象和内容的结构体(PKULL_M_REGISTRY_HANDLE)以及注册表文件句柄结构体(HKULL_M_REGISTRY_HANDLE)。这些结构体包含了文件映射句柄、映射到调用进程地址空间的位置、巢箱的起始位置以及用于查找子键和子键值的键巢室。

       在获取注册表“句柄”后,接下来的任务是获取计算机名和解密密钥。密钥位于HKLM\SYSTEM\ControlSet\Current\Control\LSA,通过查找键值,将其转换为四个字节的密钥数据。利用这个密钥数据,mimikatz能够解析出最终的密钥。

       对于sam文件和system文件的操作,主要涉及文件映射到内存的过程,通过Windows API(CreateFileMapping和MapViewOfFile)实现。这些API使得mimikatz能够在不占用大量系统资源的情况下,方便地处理大文件。

       在获取了注册表系统和sam的句柄后,mimikatz会进一步解析注册表以获取计算机名和密钥。对于密钥的获取,mimikatz通过遍历注册表项,定位到特定的键值,并通过转换宽字符为字节序列,最终组装出密钥数据。

       接着,解析过程继续进行,获取用户名和用户哈希。在解析sam键时,mimikatz首先会获取SID,然后遍历HKLM\SAM\Domains\Account\Users,解析获取用户名及其对应的哈希。解析流程涉及多个步骤,包括定位samKey、获取用户名和用户哈希,以及使用samKey解密哈希数据。

       对于samKey的获取,mimikatz需要解密加密的数据,使用syskey作为解密密钥。解密过程根据加密算法(rc4或aes)有所不同,但在最终阶段,mimikatz会调用系统函数对数据进行解密,从而获取用户哈希。

       在完成用户哈希的解析后,mimikatz还提供了一个额外的功能:获取SupplementalCreds。这个功能可以解析并解密获取对应用户的SupplementalCredentials属性,包括明文密码及哈希值,为用户提供更全面的哈希信息。

       综上所述,mimikatz通过解析注册表,实现了从系统中获取用户哈希的高效功能,为内网渗透提供了强大的工具支持。通过深入理解其解析流程和关键结构体的定义,可以更好地掌握如何利用mimikatz进行深入的安全分析和取证工作。

更多资讯请点击:百科

热门资讯

vux 源码

2025-01-28 02:192474人浏览

shopM源码

2025-01-28 01:522272人浏览

源码plp

2025-01-28 01:432754人浏览

opensolaris源码

2025-01-28 00:531454人浏览

推荐资讯

小型超市管理系统 源码

1.嘉荣超市多点生鲜电商模式对比开发2.我急需用vb做的ATM机的程序,能直接执行的急需!最好有登陆界面,余额查询,打印凭条,取嘉荣超市多点生鲜电商模式对比开发探索新时代生鲜电商的创新路径:嘉荣超市与

bwt源码

1.MD文件如何打开2.7Z压缩算法3.后缀see的电脑文件电脑文件有几种格式各种格式都是什么意思MD文件如何打开用记事本打开。 1、首先来普及一下什么是md文件,markdown也是一种标记语言

rom 源码

1.安卓原生rom是什么?2.如何制作android rom3.单片机中的ROM与RAM4.什么事ROM?5.ROM是什么6.rom版是什么意思?安卓原生rom是什么? 安卓原生R