皮皮网

【windows护眼插件源码】【超级店长源码】【stw外挂源码】fork 源码

2024-11-13 15:21:33 来源:织梦+视频+源码

1.剖析Linux内核源码解读之《实现fork研究(一)》
2.clone和fork调用的区别和联系
3.Github上Fork开源代码,源码本地二次开发,源码保持源码同步
4.ForkjoinPool -1
5.linux0.11源码分析-fork进程

fork 源码

剖析Linux内核源码解读之《实现fork研究(一)》

       Linux内核源码解析:深入探讨fork函数的源码实现机制(一)

       首先,我们关注的源码焦点是fork函数,它是源码Linux系统创建新进程的核心手段。本文将深入剖析从用户空间应用程序调用glibc库,源码windows护眼插件源码直至内核层面的源码具体过程。这里假设硬件平台为ARM,源码使用Linux内核3..3和glibc库2.版本。源码这些版本的源码库和内核代码可以从ftp.gnu.org获取。

       在glibc层面,源码针对不同CPU架构,源码超级店长源码进入内核的源码步骤有所不同。当glibc准备调用kernel时,源码它会将参数放入寄存器,源码通过软中断(SWI) 0x0指令进入保护模式,最终转至系统调用表。在arm平台上,系统调用表的结构如下:

       系统调用表中的CALL(sys_clone)宏被展开后,会将sys_clone函数的地址放入pc寄存器,这个函数实际由SYSCALL_DEFINEx定义。在do_fork函数中,关键步骤包括了对父进程和子进程的stw外挂源码跟踪,以及对子进程进行初始化,包括内存分配和vfork处理等。

       总的来说,调用流程是这样的:应用程序通过软中断触发内核处理,通过系统调用表选择并执行sys_clone,然后调用do_fork函数进行具体的进程创建操作。do_fork后续会涉及到copy_process函数,这个函数是理解fork核心逻辑的重要入口,包含了丰富的内核知识。在后续的内容中,我将深入剖析copy_process函数的更改scratch源码工作原理。

clone和fork调用的区别和联系

       åœ¨Linux中主要提供了fork、vfork、clone三个进程创建方法。

       é—®é¢˜

        在linux源码中这三个调用的执行过程是执行fork(),vfork(),clone()时,通过一个系统调用表映射到sys_fork(),sys_vfork(),sys_clone(),再在这三个函数中去调用do_fork()去做具体的创建进程工作。

       fork

       fork创建一个进程时,子进程只是完全复制父进程的资源,复制出来的子进程有自己的task_struct结构和pid,但却复制父进程其它所有的资源。例如,要是父进程打开了五个文件,那么子进程也有五个打开的文件,而且这些文件的当前读写指针也停在相同的地方。所以,这一步所做的是复制。这样得到的子进程独立于父进程, 具有良好的并发性,但是二者之间的通讯需要通过专门的通讯机制,如:pipe,共享内存等机制, 另外通过fork创建子进程,需要将上面描述的每种资源都复制一个副本。这样看来,fork是一个开销十分大的系统调用,这些开销并不是所有的情况下都是必须的,比如某进程fork出一个子进程后,其子进程仅仅是为了调用exec执行另一个可执行文件,那么在fork过程中对于虚存空间的复制将是一个多余的过程。但由于现在Linux中是采取了copy-on-write(COW写时复制)技术,为了降低开销,fork最初并不会真的产生两个不同的拷贝,因为在那个时候,大量的数据其实完全是一样的。写时复制是在推迟真正的数据拷贝。若后来确实发生了写入,那意味着parent和child的数据不一致了,于是产生复制动作,每个进程拿到属于自己的那一份,这样就可以降低系统调用的开销。所以有了写时复制后呢,vfork其实现意义就不大了。

       fork()调用执行一次返回两个值,对于父进程,fork函数返回子程序的进程号,而对于子程序,fork函数则返回零,这就是一个函数返回两次的本质。

       åœ¨fork之后,子进程和父进程都会继续执行fork调用之后的指令。子进程是父进程的副本。它将获得父进程的数据空间,堆和栈的副本,这些都是副本,父子进程并不共享这部分的内存。也就是说,子进程对父进程中的同名变量进行修改并不会影响其在父进程中的值。但是父子进程又共享一些东西,简单说来就是程序的正文段。正文段存放着由cpu执行的机器指令,通常是read-only的。

       vfork

       vfork系统调用不同于fork,用vfork创建的子进程与父进程共享地址空间,也就是说子进程完全运行在父进程的地址空间上,如果这时子进程修改了某个变量,这将影响到父进程。

       å› æ­¤ï¼Œä¸Šé¢çš„例子如果改用vfork()的话,那么两次打印a,b的值是相同的,所在地址也是相同的。

       ä½†æ­¤å¤„有一点要注意的是用vfork()创建的子进程必须显示调用exit()来结束,否则子进程将不能结束,而fork()则不存在这个情况。

       Vfork也是在父进程中返回子进程的进程号,在子进程中返回0。

       ç”¨ vfork创建子进程后,父进程会被阻塞直到子进程调用exec(exec,将一个新的可执行文件载入到地址空间并执行之。)或exit。vfork的好处是在子进程被创建后往往仅仅是为了调用exec执行另一个程序,因为它就不会对父进程的地址空间有任何引用,所以对地址空间的复制是多余的 ,因此通过vfork共享内存可以减少不必要的开销。

       clone

        系统调用fork()和vfork()是无参数的,而clone()则带有参数。fork()是全部复制,vfork()是共享内存,而clone()是则可以将父进程资源有选择地复制给子进程,而没有复制的数据结构则通过指针的复制让子进程共享,具体要复制哪些资源给子进程,由参数列表中的clone_flags来决定。另外,clone()返回的是子进程的pid。

Github上Fork开源代码,本地二次开发,保持源码同步

       在Github上,获取并利用开源代码进行本地二次开发是一项常见操作。首先,你需要通过Fork功能复制一个大佬的开源代码仓库,这就像克隆一个项目,让你可以在不影响原始项目的情况下进行试验或贡献代码。要实现这一点,只需简单地执行两个步骤:

       1. Fork仓库:复制链接后,使用git clone命令,开源码输出将仓库克隆到本地,例如:`git clone /YOUR-USERNAME/origin-repo.git`

       2. 同步本地副本:为保持与原始仓库同步,你需要配置git。通常,这涉及设置upstream指向主仓库,然后使用git pull从upstream获取更新。如果你想将这些更改推送到你的Fork仓库,还需要执行一次`git push`操作。

       通过这些步骤,你就可以在本地对Fork的源代码进行修改,并确保与原始代码库保持同步。这是开源社区中协作开发的基础实践,帮助开发者们扩展和改进现有的开源项目。

ForkjoinPool -1

        ForkJoin是用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。Fork就是把一个大任务切分为若干子任务并行的执行,Join就是合并这些子任务的执行结果,最后得到这个大任务的结果。

        下面是一个是一个简单的Join/Fork计算过程,将1—数字相加

        通常这样个模型,你们会想到什么?

        Release Framework ? 常见的处理模型是什么? task pool - worker pool的模型。 但是Forkjoinpool 采取了完全不同的模型。

        ForkJoinPool一种ExecutorService的实现,运行ForkJoinTask任务。ForkJoinPool区别于其它ExecutorService,主要是因为它采用了一种工作窃取(work-stealing)的机制。所有被ForkJoinPool管理的线程尝试窃取提交到池子里的任务来执行,执行中又可产生子任务提交到池子中。

        ForkJoinPool维护了一个WorkQueue的数组(数组长度是2的整数次方,自动增长)。每个workQueue都有任务队列(ForkJoinTask的数组),并且用base、top指向任务队列队尾和队头。work-stealing机制就是工作线程挨个扫描任务队列,如果队列不为空则取队尾的任务并执行。示意图如下

        流程图:

        pool属性

        workQueues是pool的属性,它是WorkQueue类型的数组。externalPush和externalSubmit所创建的workQueue没有owner(即不是worker),且会被放到workQueues的偶数位置;而createWorker创建的workQueue(即worker)有owner,且会被放到workQueues的奇数位置。

        WorkQueue的几个重要成员变量说明如下:

        这是WorkQueue的config,高位跟pool的config值保持一致,而低位则是workQueue在workQueues数组的位置。

        从workQueues属性的介绍中,我们知道,不是所有workQueue都有worker,没有worker的workQueue称为公共队列(shared queue),config的第位就是用来判断是否是公共队列的。在externalSubmit创建工作队列时,有:

        q.config = k | SHARED_QUEUE;

        其中q是新创建的workQueue,k就是q在workQueues数组中的位置,SHARED_QUEUE=1<<,注意这里config没有保留mode的信息。

        而在registerWorker中,则是这样给workQueue的config赋值的:

        w.config = i | mode;

        w是新创建的workQueue,i是其在workQueues数组中的位置,没有设置SHARED_QUEUE标记位

        scanState是workQueue的属性,是int类型的。scanState的低位可以用来定位当前worker处于workQueues数组的哪个位置。每个worker在被创建时会在其构造函数中调用pool的registerWorker,而registerWorker会给scanState赋一个初始值,这个值是奇数,因为worker是由createWorker创建,并会被放到WorkQueues的奇数位置,而createWorker创建worker时会调用registerWorker。

        简言之,worker的scanState初始值是奇数,非worker的scanstate初始值=INACTIVE=1<<,小于0(非worker的workQueue在externalSubmit中创建)。

        当每次调用signalWork(或tryRelease)唤醒worker时,worker的高位就会加1

        另外,scanState<0表示worker未激活,当worker调用runtask执行任务时,scanState会被置为偶数,即设置scanState的最右边一位为0。

        worker休眠时,是这样存储的

        worker的唤醒类似这样:

        在worker休眠的4行伪码中,让ctl的低位的值变为worker.scanState,这样下次就可以通过scanState唤醒该worker。唤醒该worker时,把该worker的preStack设置为ctl低位的值,这样下下次唤醒的worker就是scanState等于该preStack的worker。

        这里通过preStack保存下一个worker,这个worker比当前worker更早地在等待,所以形成一个后进先出的栈。

        runState是int类型的值,控制整个pool的运行状态和生命周期,有下面几个值(可以好几个值同时存在):

        如果runState值为0,表示pool尚未初始化。

        RSLOCK表示锁定pool,当添加worker和pool终止时,就要使用RSLOCK锁定整个pool。如果由于runState被锁定,导致其他操作等待runState解锁(通常用wait进行等待),当runState设置了RSIGNAL,表示runState解锁,并通知(notifyAll)等待的操作。

        剩下4个值都跟runState生命周期有关,都可以顾名思义:

        当需要停止时,设置runState的STOP值,表示准备关闭,这样其他操作看到这个标记位,就不会继续操作,比如tryAddWorker看到STOP就不会再创建worker:

        而tryTerminate对这些生命周期状态的处理则是这样的:

        当前top和base的初始值为 INITIAL_QUEUE_CAPACITY >>>1= (1 << )>>>1 = /2。然后push一个task之后,top+=1,也就是说,top对应的位置是没有task的,最近push进来的task在top-1的位置。而base的位置则能对应到task,base对应最先放进队列的task,top-1对应最后放进队列的task。

        qlock值含义:1: locked, < 0: terminate; else 0

        即当qlock值位0时,可以正常操作,值=1时,表示锁定

        int SQMASK=0xe,则任何整数跟SQMASK位与后,得到的数就是偶数。

        证明:

        注意这里化为二进制是 ,尤其注意最右边第一位是0,任何数跟最右边第一位是0的数位与后,得到的数就是偶数,因为位与之后,第一位就是0,比如s=A&SQMASK,A可以是任意整数,然后把s按二进制进行多项式展开,则有s=2 n1+2 n2 ……+2^nn,这里n≥1,所以s可以被2整除,即s是偶数。

        所以一个数是奇数还是偶数,看其最右边第一位即可。

        我们知道workQueue有externalPush创建的和createWorker创建的worker,两种方式创建的workQueue,其放置到workQueues的位置是不同的,前者放到workQueue的偶数位置,而后者则放到奇数位置。不同workQueue找到自己在workQueues的位置的算法有点不同。

        下面看一下forkjoin框架获取workQueues中的偶数位置的workQueue的算法:

        这样就能获取workQueues的偶数位置的workQueue。m保证m & r & SQMASK这整个运算结果不会超出workQueues的下标,SQMASK保证取到的是偶数位置的workQueue。这里有一个有趣的现象,假设0到workQueues.length-1之间有n个偶数,m & r & SQMASK每次都能取到其中一个偶数,而且连续n次取到的偶数不会出现重复值,散列性非常好。而且是循环的,即1到n次取n个不同偶数,n+1到2n也是取n次不同偶数,此时n个偶数每个都被重新取一次。下面分析下r值有什么秘密,为何能保证这样的散列性

        ThreadLocalRandom内有一常量PROBE_INCREMENT = 0x9eb9,以及一个静态的probeGenerator =new AtomicInteger() ,然后每个线程的probe= probeGenerator.addAndGet(PROBE_INCREMENT)所以第一个线程的probe值是0x9eb9,第二个线程的值就是0x9eb9+0x9eb9,第三个线程的值就是0x9eb9+0x9eb9+0x9eb9以此类推,整个值是线性的,可以用y=kx表示,其中k=0x9eb9,x表示第几个线程。这样每个线程的probe可以保证不一样,而且具有很好的离散性。

        实际上,可以不用0x9eb9这个值,用任意一个奇数都是可以的,比如1。如果用1的话,probe+=1,这样每个线程的probe就都是不同的,而且具有很好的离散性。也就是说,假设有限制条件probe<n,超过n则产生溢出。则probe自加n次后才会开始出现重复值,n次前probe每次自加的值都不同。实际上用任意一个奇数,都可以保证probe自加n次后才会开始出现重复值,有兴趣可看本文最后附录部分。由于奇数的离散性,所以只要线程数小于m或者SQMASK两者中的最小值,则每个线程都能唯一地占据一个ws中的一个位置

        当一个操作是在非ForkjoinThread的线程中进行的,则称该操作为外部操作。比如我们前面执行pool.invoke,invoke内又执行externalPush。由于invoke是在非ForkjoinThread线程中进行的(这里是在main线程中进行),所以是一个外部操作,调用的是externalPush。之后task的执行是通过ForkJoinThread来执行的,所以task中的fork就是内部操作,调用的是push,把任务提交到工作队列。其实fork的实现是类似下面这样的:

        即fork会根据执行自身的线程是否是ForkJoinThread的实例来判断是处于外部还是内部。那为何要区分内外部?

        任何线程都可以使用ForkJoin框架,但是对于非ForkJoinThread的线程,它到底是怎样的,ForkJoin无法控制,也无法对其优化。因此区分出内外部,这样方便ForkJoin框架对任务的执行进行控制和优化

        forkJoinPool.invoke(task)是把任务放入工作队列,并等待任务执行。源码如下

        这里externalPush负责任务提交,externalPush源码如下:

linux0.源码分析-fork进程

       在操作系统中,Linux0.源码中的fork函数执行流程分为启动和系统调用两个阶段。启动阶段首先在init/main.c中执行init用于启动shell,让用户执行命令。

       在include/unistd.h中定义了宏,表示将__NR_fork的值复制给eax寄存器,并将_res与eax绑定。使用int 0x中断后,系统调用函数system_call被调用,从sys_call_table中找到对应的函数执行。fork函数执行时,操作系统会在内核栈里保存相关寄存器,准备中断返回。

       接着,操作系统通过int调用system_call,在kernel/system_call.s中执行call _sys_call_table(,%eax,4)指令。内核栈中,因为是段内跳转,所以cs不需要入栈。ip指向call指令的下一句代码。执行call指令进入系统调用表。

       在includ/linux/sys.h中,系统调用表是一个数组,根据eax即系统函数编号找到对应的函数执行。对于fork,__NR_fork值2被放入eax寄存器,%eax * 4找到sys_fork。执行sys_fork后,调用find_empty_process函数找到可用的进程号,并放入eax寄存器返回。

       接着,系统调用执行copy_process函数建立新进程结构体并复制数据。新进程的ip出栈,执行完copy_process后,系统调用返回,内核栈状态改变。此阶段最后通过iret指令弹出寄存器,恢复中断前状态。

       总结,fork函数通过复制当前进程结构体、处理信号并初始化新进程,实现父进程与子进程的创建与共享。子进程返回值为0,父进程返回新子进程的pid。通过fork函数的执行,操作系统能够高效地创建进程,实现多任务处理。