1.3d稀疏卷积——spconv源码剖析(五)
2.MMDetection3D之DETR3D源码解析:整体流程篇
3.3d稀疏卷积——spconv源码剖析(三)
4.[3D游戏开发实践] Cocos Cyberpunk 源码解读-目录结构
5.[技术随笔]🛠🛠从源码安装Pytorch3D详细记录及学习资料
6.Unity3D MMORPG核心技术:AOI算法源码分析与详解
3d稀疏卷积——spconv源码剖析(五)
介绍在构建的源码Rulebook指导下执行特定的稀疏卷积计算,关注于类SparseConvolution,源码其代码位于spconv/conv.py。源码
Fsp.indice_subm_conv和Fsp.indice_conv经过spconv/functional.py中的源码SubMConvFunction和SparseConvFunction对象转换,最终会调用spconv/ops.py模块中的源码indice_conv等函数。
专注于子流线卷积接口:indice_subm_conv,源码天道指标源码其代码位于spconv/functional.py。源码
通过Python接口调用底层C++函数可能不够直观,源码因此使用torch.autograd.Function封装算子底层调用,源码该类表示PyTorch中的源码可导函数,具备前向推理和反向传播实现时,源码即可作为普通PyTorch函数使用。源码
值得注意的源码是,Function类在模型部署中具有优势,源码若定义了symbolic静态方法,源码此Function在执行torch.onnx.export()时,可依据symbolic定义规则转换为ONNX算子。
apply方法是torch.autograd.Function的一部分,此方法负责在前向推理或反向传播时的调度工作。通过将indice_subm_conv = SubMConvFunction.apply简化为indice_subm_conv接口,简化了算子使用,屏蔽了SubMConvFunction的具体实现。
SubMConvFunction的前向传播方法forward调用spconv/ops.py的indice_conv函数。在src/spconv/all.cc文件中,群码采集源码通过PyTorch提供的OP Register对底层C++API进行注册。
通过torch.ops.load_library加载.so文件,使用torch.ops.spconv.indice_conv调用src/spconv/spconv_ops.cc文件中的indiceConv函数。
深入探索src/spconv/spconv_ops.cc文件中的indiceConv函数。
代写部分代码内容...
MMDetection3D之DETR3D源码解析:整体流程篇
关于torch.distributed.launch的更多细节: blog.csdn.net/magic_ll/...
设置config file和work dir,work dir保存最终config,log等信息,work dir默认为path/to/user/work_dir/
作者将自定义的部分放在 'projects/mmdet3d_plugin/' 文件夹下,通过registry类注册模块,这里利用importlib导入模块并初始化自定义的类。
这里设置模型的输出信息保存路径、gpus等模型的运行时环境参数
这里初始化模型,初始化train_dataset和val_dataset
这部分完成了DataLoader的初始化,runner和hooks的初始化,并且按照workflow运行runner。
3d稀疏卷积——spconv源码剖析(三)
构建Rulebook
下面看ops.get_indice_pairs,位于:spconv/ops.py
构建Rulebook由ops.get_indice_pairs接口完成
get_indice_pairs函数具体实现:
主要就是完成了一些参数的校验和预处理。首先,对于3d普通稀疏卷积,根据输入shape大小,kernel size,stride等参数计算出输出输出shape,子流行稀疏卷积就不必计算了,狗狗币程序源码输出shape和输入shape一样大小
准备好参数之后就进入最核心的get_indice_pairs函数。因为spconv通过torch.ops.load_library加载.so文件注册,所以这里通torch.ops.spconv.get_indice_pairs这种方式来调用该函数。
算子注册:在src/spconv/all.cc文件中通过Pytorch提供的OP Register(算子注册的方式)对底层c++ api进行了注册,可以python接口形式调用c++算子
同C++ extension方式一样,OP Register也是Pytorch提供的一种底层扩展算子注册的方式。注册的算子可以通过 torch.xxx或者 tensor.xxx的方式进行调用,该方式同样与pytorch源码解耦,增加和修改算子不需要重新编译pytorch源码。用该方式注册一个新的算子,流程非常简单:先编写C++相关的算子实现,然后通过pytorch底层的注册接口(torch::RegisterOperators),将该算子注册即可。
构建Rulebook实际通过python接口get_indice_pairs调用src/spconv/spconv_ops.cc文件种的getIndicePairs函数
代码位于:src/spconv/spconv_ops.cc
分析getIndicePairs直接将重心锁定在GPU逻辑部分,并且子流行3d稀疏卷积和正常3d稀疏卷积分开讨论,优先子流行3d稀疏卷积。
代码中最重要的3个变量分别为:indicePairs,indiceNum和gridOut,其建立过程如下:
indicePairs代表了稀疏卷积输入输出的映射规则,即Input Hash Table 和 Output Hash Table。这里分配理论最大的内存,它的shape为{ 2,kernelVolume,numAct},2表示输入和输出两个方向,kernelVolume为卷积核的debian源码编译debvolume size。例如一个3x3x3的卷积核,其volume size就是(3*3*3)。numAct表示输入有效(active)特征的数量。indiceNum用于保存卷积核每一个位置上的总的计算的次数,indiceNum对应中的count
代码中关于gpu建立rulebook调用create_submconv_indice_pair_cuda函数来完成,下面具体分析下create_submconv_indice_pair_cuda函数
子流线稀疏卷积
子流线稀疏卷积是调用create_submconv_indice_pair_cuda函数来构建rulebook
在create_submconv_indice_pair_cuda大可不必深究以下动态分发机制的运行原理。
直接将重心锁定在核函数:
prepareSubMGridKernel核函数中grid_size和block_size实则都是用的整形变量。其中block_size为tv::cuda::CUDA_NUM_THREADS,在include/tensorview/cuda_utils.h文件中定义,大小为。而grid_size大小通过tv::cuda::getBlocks(numActIn)计算得到,其中numActIn表示有效(active)输入数据的数量。
prepareSubMGridKernel作用:建立输出张量坐标(通过index表示)到输出序号之间的一张哈希表
见:include/spconv/indice.cu.h
这里计算index换了一种模板加递归的写法,看起来比较复杂而已。令:new_indicesIn = indicesIn.data(),可以推导得出index为:
ArrayIndexRowMajor位于include/tensorview/tensorview.h,其递归调用写法如下:
接着看核函数getSubMIndicePairsKernel3:
位于:include/spconv/indice.cu.h
看:
上述写法类似我们函数中常见的循环的写法,具体可以查看include/tensorview/kernel_utils.h
NumILP按默认值等于1的话,其stride也是gridDim.x*blockDim.x。索引最大值要小于该线程块的线程上限索引blockDim.x * gridDim.x,功能与下面代码类似:
参考: blog.csdn.net/ChuiGeDaQ...
[3D游戏开发实践] Cocos Cyberpunk 源码解读-目录结构
在深入解读Cocos Cyberpunk源码之前,首先,让我们打开scene-game-start场景,启动游戏预览,进入游戏场景。正品签溯源码点击START按钮,游戏正式开始。漫游摄像机将带你漫游整个场景,再次点击START,可以进入游戏。
在电脑端按ESC键或手机端点击设置按钮,查看操作说明。接下来,让我们浏览Cocos Cyberpunk项目的目录结构。在左下角的Assets窗口中,我们可以看到项目文件的分层。
首先,animations目录中仅包含用于场景漫游的摄像机动画文件。LightFX目录存储了光照贴图,这些是光照烘焙系统自动生成的,无需手动修改。res目录是整个游戏资源的集中地,包括动画、特效、模型、shader、UI、音效等资源。
resources目录则存放动态加载的资源,当前内容较少,随着游戏的完善,资源将会增多。scene目录包含了环境反射探针文件,与场景文件名对应的文件夹存放反射贴图。scene-development目录则包含一些用于单元测试的开发场景。
scripts目录存放所有游戏逻辑脚本,而src目录可能包含项目开发过程中的测试文件。test目录同样是用于测试的,存放的文件与项目无关。scene目录则是游戏主场景,而scene-game-start则为游戏启动场景,进行UI逻辑初始化,并加载游戏主场景。
自定义管线以编辑器扩展的形式存在,可将其移至项目中。管线对应自定义管线,通过在场景中新建节点并添加pipeline/graph/pipeline-graph.ts组件来查看可视化管线图。实时探针相关组件在反射探针节点上挂载,提供实时更新功能。
反射探针节点上的ReflectionUtils脚本组件实现了实时更新探针的逻辑,适用于需要实时探针的项目。此外,Cocos Cyberpunk还实现了SphereProjection修正,使得反射更符合物体形状。
静态遮挡剔除机制在Cocos Cyberpunk中实现,通过将可见关系预存入空间格子,渲染时直接查表获得渲染列表,极大提升效率。这一部分主要在scene场景中的static-occlusion-culling结点中处理。
机型适配策略在Cocos Cyberpunk中实现,根据设备性能选择渲染效果,确保流畅帧率。处理了不同设备上的效果调整,包括性能开关策略、机型分档策略,主要在href-settings.ts、gpu.ts和gpu-mobiles.ts文件中实现。
游戏逻辑方面,Cocos Cyberpunk包含完整的TPS游戏逻辑,init节点包含了特效、UI、对象池等节点,挂载的init.ts脚本组件确保游戏逻辑在主场景加载后持续运行。接下来,我们将对游戏逻辑相关源码进行深入解读。
[技术随笔]🛠🛠从源码安装Pytorch3D详细记录及学习资料
这篇文章详细介绍了如何从源码安装Pytorch3D,包括选择合适的镜像、配置工具和编译步骤。首先,选择Pytorch 1.9的devel镜像,包含CUDA和驱动,确保与Pytorch3D的版本要求相匹配,比如Python 3.7和CUDA .2。在镜像内,需要检查nvcc编译器、CUDA工具箱和驱动是否正常,同时安装基本工具如git、vim、sudo和curl。
配置CUB工具是关键步骤,根据Pytorch3D文档,需要在编译前设置CUB_HOME。即使Pytorch镜像自带CUDA,也建议手动设置`FORCE_CUDA`为1以确保兼容。接着,如果遇到conda依赖问题,作者选择从源码编译Pytorch3D,编译过程中的安装log和版本检查是必要的。
最后,通过测试用例,如从ARkit导出数据并渲染白模,验证GPU的使用。结果显示GPU正常工作,安装成功。对于更深入的Pytorch3D使用,作者还分享了一些参考资源,以便初学者入门。
Unity3D MMORPG核心技术:AOI算法源码分析与详解
Unity3D是一款跨平台的游戏引擎,在游戏开发领域应用广泛。MMORPG(大型多人在线角色扮演游戏)作为游戏开发的重要领域,在Unity3D中也得到广泛应用。玩家之间的交互是游戏开发中一个重要问题。如何高效处理这些交互?AOI(Area of Interest)算法提供了一个有效解决方案。 AOI算法是一种空间索引算法,能够依据玩家位置快速确定周围玩家,从而提高交互效率。实现AOI算法通常采用Quadtree(四叉树)或Octree(八叉树),将空间划分为多个区域,每个区域可包含若干玩家。 以下为AOI算法实现方法和代码解释。 **实现方法**将空间划分为多个区域(Quadtree或Octree)。
玩家移动、加入或离开时,更新对应区域。
玩家查找周围玩家时,遍历相关区域。
**代码实现**使用C#语言实现Quadtree。
编写函数,实现玩家进入/离开、移动和查找玩家。
通过上述方法和代码,AOI算法可以在MMORPG中高效处理玩家交互,优化游戏性能和玩家体验。2025-01-13 21:132973人浏览
2025-01-13 21:00401人浏览
2025-01-13 20:491396人浏览
2025-01-13 20:372019人浏览
2025-01-13 19:452493人浏览
2025-01-13 19:002077人浏览
1.CVS权限管理CVS权限管理 CVS的权限管理主要有两种策略。第一种是基于系统文件权限的系统用户管理,适用于多个在Linux上使用系统帐号的开发人员进行开发。通过将/home/cvsroot目
中国消费者报报道记者王文郁)今年以来,辽宁省沈阳市苏家屯区市场监管部门紧盯食品安全监管的重点难点问题,将日常食品安全监管与节假日、大型活动等重要时段食品安全监管相结合,主动作为、全力推进,稳步提升食品
中国消费者报武汉讯李保华记者吴采平)为规范网络集中促销行为,维护网络市场秩序,10月24日,湖北省市场监管局召开“双11”网络集中促销行政指导会暨平台合规治理座谈会,阿里巴巴、京东、美团、饿了么、拼多