1.有一张人脸的侧脸像,如何用python及相关的库来计算人脸转过的角度。
2.Caffe学习(二) —— 下载、编译和安装Caffe(源码安装方式)
3.常ç¨çå大pythonå¾åå¤çå·¥å
·
有一张人脸的侧脸像,如何用python及相关的库来计算人脸转过的角度。
这个很难办到,泓樽付源码不过可以通过判断关键点的特点进行判断,但是准确率不高
前言
很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的微信报销源码我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在行代码以内简单地实现人脸识别。
一点区分
对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的论坛源码免费下载问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。
所用工具
Anaconda 2——Python 2
Dlib
scikit-image
Dlib
对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、js魔方特效源码数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:
pip install dlib
上面需要用到的scikit-image同样只是需要这么一句:
pip install scikit-image
注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,少儿围棋平台源码按照错误提示一步步走就行了。
人脸识别
之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过行,其实是没啥难度的。有难度的东西都在源码和论文里。
首先先通过文件树看一下今天需要用到的东西:
准备了六个候选人的放在candidate-faces文件夹中,然后需要识别的人脸test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py是我们的python脚本。shape_predictor__face_landmarks.dat是已经训练好的人脸关键点检测器。dlib_face_recognition_resnet_model_v1.dat是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 冠军,通过让网络对残差进行学习,在深度和精度上做到了比
CNN 更加强大。
1. 前期准备
shape_predictor__face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat都可以在这里找到。
然后准备几个人的人脸作为候选人脸,最好是正脸。放到candidate-faces文件夹中。
本文这里准备的是六张,如下:
她们分别是
然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:
可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张微微侧脸,而且右侧有阴影。
2.识别流程
数据准备完毕,接下来就是代码了。识别的大致流程是这样的:
3.代码
代码不做过多解释,因为已经注释的非常完善了。以下是girl-face-rec.py
# -*- coding: UTF-8 -*-
import sys,os,dlib,glob,numpy
from skimage import io
if len(sys.argv) != 5:
print "请检查参数是否正确"
exit()
# 1.人脸关键点检测器
predictor_path = sys.argv[1]
# 2.人脸识别模型
face_rec_model_path = sys.argv[2]
# 3.候选人脸文件夹
faces_folder_path = sys.argv[3]
# 4.需识别的人脸
img_path = sys.argv[4]
# 1.加载正脸检测器
detector = dlib.get_frontal_face_detector()
# 2.加载人脸关键点检测器
sp = dlib.shape_predictor(predictor_path)
# 3. 加载人脸识别模型
facerec = dlib.face_recognition_model_v1(face_rec_model_path)
# win = dlib.image_window()
# 候选人脸描述子list
descriptors = []
# 对文件夹下的每一个人脸进行:
# 1.人脸检测
# 2.关键点检测
# 3.描述子提取
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
print("Processing file: { }".format(f))
img = io.imread(f)
#win.clear_overlay()
#win.set_image(img)
# 1.人脸检测
dets = detector(img, 1)
print("Number of faces detected: { }".format(len(dets)))
for k, d in enumerate(dets):
# 2.关键点检测
shape = sp(img, d)
# 画出人脸区域和和关键点
# win.clear_overlay()
# win.add_overlay(d)
# win.add_overlay(shape)
# 3.描述子提取,D向量
face_descriptor = facerec.compute_face_descriptor(img, shape)
# 转换为numpy array
v = numpy.array(face_descriptor)
descriptors.append(v)
# 对需识别人脸进行同样处理
# 提取描述子,不再注释
img = io.imread(img_path)
dets = detector(img, 1)
dist = []
for k, d in enumerate(dets):
shape = sp(img, d)
face_descriptor = facerec.compute_face_descriptor(img, shape)
d_test = numpy.array(face_descriptor)
# 计算欧式距离
for i in descriptors:
dist_ = numpy.linalg.norm(i-d_test)
dist.append(dist_)
# 候选人名单
candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']
# 候选人和距离组成一个dict
c_d = dict(zip(candidate,dist))
cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])
print "\n The person is: ",cd_sorted[0][0]
dlib.hit_enter_to_continue()
4.运行结果
我们在.py所在的文件夹下打开命令行,运行如下命令
python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg
由于shape_predictor__face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat名字实在太长,所以我把它们重命名为1.dat和2.dat。
运行结果如下:
The person is Bingbing。
记忆力不好的同学可以翻上去看看test1.jpg是谁的。有兴趣的话可以把四张测试都运行下试试。
这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试的输出结果是候选人4。对比一下两张可以很容易发现混淆的原因。
机器毕竟不是人,机器的智能还需要人来提升。
有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选用多张,然后对比和每个人距离的平均值之类的。全凭自己了。
Caffe学习(二) —— 下载、编译和安装Caffe(源码安装方式)
采用caffe源码编译安装方式说明
此方法仅适用于编译CPU支持版本的Caffe。推荐通过Git下载以获取更新及查看历史变更。
主机环境配置
系统环境:Ubuntu .
步骤一:安装依赖库与Python 2.7
步骤二:安装CUDA(注意:虽然仅编译CPU版本的Caffe,但安装CUDA时可能会遇到编译错误,需确保环境兼容性)
编译Caffe
步骤一:修改Make.config文件
具体配置说明请参考我的另一篇博客("Hello小崔:caffe(master分支)Makefile.config分析")
步骤二:执行make编译
测试已通过
步骤三:解决编译过程中的错误
错误实例:ImportError: No module named skimage.io
解决方法:执行sudo apt-get install python-skimage
错误实例:ImportError: No module named google.protobuf.internal
解决方法:执行sudo apt-get install python-protobuf
更多错误解决办法,请参阅另一篇博客("Hello小崔:caffe编译报错解决记录")
常ç¨çå大pythonå¾åå¤çå·¥å ·
åææ é¢ï¼ Python image manipulation tools.
ä½è | Parul Pandey
ç¿»è¯ | å®å ¶ç½ä¹å°ãJimmyHua
ä»å¤©ï¼å¨æ们çä¸çéå 满äºæ°æ®ï¼å¾åæ为ææè¿äºæ°æ®çéè¦ç»æé¨åãä½æ 论æ¯ç¨äºä½ç§ç¨éï¼è¿äºå¾åé½éè¦è¿è¡å¤çãå¾åå¤çå°±æ¯åæåå¤çæ°åå¾åçè¿ç¨ï¼ä¸»è¦æ¨å¨æé«å ¶è´¨éæä»ä¸æåä¸äºä¿¡æ¯ï¼ç¶åå¯ä»¥å°å ¶ç¨äºæç§ç¨éã
å¾åå¤çä¸ç常è§ä»»å¡å æ¬æ¾ç¤ºå¾åï¼åºæ¬æä½å¦è£åªã翻转ãæ转çï¼å¾ååå²ï¼åç±»åç¹å¾æåï¼å¾åæ¢å¤åå¾åè¯å«ãPythonæ为è¿ç§å¾åå¤çä»»å¡æ¯ä¸ä¸ªæ°å½éæ©ï¼è¿æ¯å 为å®ä½ä¸ºä¸ç§ç§å¦ç¼ç¨è¯è¨æ£å¨æ¥çæ®åï¼å¹¶ä¸å¨å ¶çæç³»ç»ä¸å è´¹æä¾è®¸å¤æå è¿çå¾åå¤çå·¥å ·ä¾å¤§å®¶ä½¿ç¨ã
让æ们çä¸ä¸å¯ä»¥ç¨äºå¾åå¤çä»»å¡ä¸çå¸¸ç¨ Python åºæåªäºå§ã
1.scikit-image
scikit-imageæ¯ä¸ä¸ªå¼æºçPythonå ï¼éç¨äºnumpyæ°ç»ãå®å®ç°äºç¨äºç 究ï¼æè²åå·¥ä¸åºç¨çç®æ³åå®ç¨å·¥å ·ãå³ä½¿æ¯é£äºåæ¥è§¦Pythonçæç³»ç»ç人ï¼å®ä¹æ¯ä¸ä¸ªç¸å½ç®åç´æ¥çåºãæ¤ä»£ç æ¯ç±æ´»è·çå¿æ¿è 社åºç¼åçï¼å ·æé«è´¨éååè¡è¯å®¡çæ§è´¨ã
èµæº
ææ¡£éè®°å½äºä¸°å¯çä¾ååå®é ç¨ä¾ï¼é 读ä¸é¢çææ¡£ï¼
/abidrahmank/OpenCV2-Python-Tutorials
ç¨æ³
ä¸é¢æ¯ä¸ä¸ªä¾åï¼å±ç¤ºäºOpenCV-Python使ç¨éåå¡æ¹æ³å建ä¸ä¸ªå为âOrappleâçæ°æ°´æå¾åèåçåè½ã
6. SimpleCV
SimpleCV ä¹æ¯ä¸ä¸ªç¨äºæ建计ç®æºè§è§åºç¨ç¨åºçå¼æºæ¡æ¶ãæäºå®ï¼ä½ å°±å¯ä»¥è®¿é®å 个é«æ§è½ç计ç®æºè§è§åºï¼å¦OpenCVï¼èä¸ä¸éè¦å å¦ä¹ äºè§£ä½æ·±åº¦ãæä»¶æ ¼å¼ãé¢è²ç©ºé´çã
å®çå¦ä¹ æ²çº¿å¤§å¤§å°äºOpenCVï¼æ£å¦å®ä»¬çå£å·æ说â计ç®æºè§è§åå¾ç®åâãä¸äºæ¯æSimpleCVçè§ç¹æï¼
å³ä½¿æ¯åå¦è ä¹å¯ä»¥ç¼åç®åçæºå¨è§è§æµè¯æåæºãè§é¢æ件ãå¾ååè§é¢æµé½æ¯å¯äºæä½çèµæº
å®æ¹ææ¡£é常容æç解ï¼èä¸æ大éçä¾åå使ç¨æ¡ä¾å»å¦ä¹ ï¼
/hhatto/pgmagick
ç¨æ³
使ç¨pgmagickå¯ä»¥è¿è¡çå¾åå¤çæ´»å¨å¾å°ï¼æ¯å¦ï¼
å¾å缩æ¾
è¾¹ç¼æå
. Pycairo
Pycairoæ¯å¾åå¤çåºcairoçä¸ç»Pythonæç»ãCairoæ¯ä¸ä¸ªç¨äºç»å¶ç¢éå¾å½¢ç2Då¾å½¢åºãç¢éå¾å½¢å¾æ趣ï¼å 为å®ä»¬å¨è°æ´å¤§å°æ转æ¢æ¶ä¸ä¼å¤±å»æ¸ æ°åº¦ ãPycairoæ¯cairoçä¸ç»ç»å®ï¼å¯ç¨äºä»Pythonè°ç¨cairoå½ä»¤ã
èµæº
PycairoçGitHubåºæ¯ä¸ä¸ªå¾å¥½çèµæºï¼æå ³äºå®è£ å使ç¨ç详ç»è¯´æãè¿æä¸ä¸ªå ¥é¨æåï¼å ¶ä¸æä¸ä¸ªå ³äºPycairoçç®çæç¨ã
åºï¼/pygobject/pycairoæåï¼https://pycairo.readthedocs.io/en/latest/tutorial.htmlç¨æ³
使ç¨Pycairoç»å¶çº¿æ¡ãåºæ¬å½¢ç¶åå¾å梯度ï¼
æ»ç»
æä¸äºæç¨ä¸å è´¹çPythonå¾åå¤çåºå¯ä»¥ä½¿ç¨ï¼æçæ¯ä¼æå¨ç¥çï¼æçå¯è½å¯¹ä½ æ¥è¯´æ¯æ°çï¼è¯çå¤å»äºè§£å®ä»¬ã
易语言密码输入源码_易语言密码输入源码怎么输入
点菜系统源码_点菜系统源代码
微信营销平台源码
商城分销源码_商城分销源码是什么
网络摄像头源码_网络摄像头源码是什么
上传下载源码_上传下载源码php