1.【Linux】linux下OpenSSL的私钥源码RSA密钥生成
2.fido是什么
3.什么是硬编码
4.OpenSSL密钥和OpenSSH密钥格式
5.RSA加密算法对字符串加密(C++语言)看见你之前回答过这个问题,可不可以把源代码给我?
6.å¦ä½å©ç¨OpenSSLåºè¿è¡RSAå å¯å解å¯
【Linux】linux下OpenSSL的私钥源码RSA密钥生成
在Linux系统中,OpenSSL是私钥源码一个常用的加密工具,本文将指导如何在该环境下生成RSA密钥对。私钥源码首先,私钥源码有两条主要的私钥源码微擎互助源码安装途径:源码安装和yum包安装。
1. 源码安装:
- 下载openssl-1.0.0e.tar.gz压缩包,私钥源码将其放在根目录。私钥源码
- 使用命令`tar -xzf openssl-openssl-1.0.0e.tar.gz`解压缩,私钥源码得到openssl-1.0.0e文件夹。私钥源码
- 进入解压目录并设定安装路径,私钥源码例如`./config --prefix=/usr/local/openssl`。私钥源码
- 确认安装配置无误后,私钥源码执行`./config -t`,私钥源码然后编译安装:`make`。私钥源码
2.
使用yum包安装:
- 可以通过`yum install openssl* -y`快速安装,但本文重点在于自定义密钥生成。
要生成RSA密钥对,首先生成位的python 树莓派源码私钥:
- 输入`genrsa -out rsa_private_key.pem `,私钥会保存为rsa_private_key.pem,需妥善保管。
接着,根据私钥生成公钥:
- 使用`rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem`命令,公钥会保存为rsa_public_key.pem。
对于更安全的存储,可以生成PKCS8格式的私钥:
- 执行`pkcs8 -topk8 -inform PEM -in rsa_private_key.pem -outform PEM -nocrypt`,私钥将被转换为PKCS8格式。
生成的公钥可以使用`cat rsa_public_key.pem`查看,注意保持文件格式,以便正确进行加密和解密操作。
总之,通过上述步骤,您可以在Linux下成功生成和管理RSA密钥对,确保开发语言如PHP中的安全使用。
fido是什么
FIDO是一种开放源代码标准,全称是Fast Identity Online(线上快速身份验证),旨在提供安全、dz论坛源码3.4便捷、私密的在线身份验证方式。它采用公钥基础设施(PKI)和通用密码学标准,通过密码学算法生成密钥对,实现用户身份的安全验证和管理。
FIDO标准的出现,旨在解决传统密码验证方式存在的问题。传统密码验证方式往往存在密码泄露、密码遗忘、密码被盗用等安全隐患,而且用户需要在多个网站和应用中记住不同的密码,非常不便。FIDO标准通过公钥密码学技术,实现了无需密码即可进行身份验证的功能,提高了身份验证的安全性和便捷性。
FIDO标准的应用范围非常广泛,可以应用于各种需要进行身份验证的场合,如网站登录、神秘洞公式源码移动应用登录、支付验证等。在实际应用中,FIDO标准通过生成密钥对和公钥证书的方式,实现了用户身份的唯一标识和验证。用户在注册时,会生成一对密钥,私钥由用户自己保管,公钥则上传到认证服务器进行验证。在进行身份验证时,用户只需通过私钥进行签名操作,认证服务器即可验证用户的身份。
FIDO标准不仅提高了身份验证的安全性和便捷性,还具有非常好的隐私保护效果。由于FIDO标准采用了公钥密码学技术,用户的身份信息不会在网络传输过程中被泄露,也不会被存储在认证服务器中,从而有效地保护了用户的源码和反码转换隐私。
总之,FIDO是一种非常实用的在线身份验证标准,通过公钥密码学技术,实现了无需密码即可进行身份验证的功能,提高了身份验证的安全性和便捷性,同时也具有非常好的隐私保护效果。随着FIDO标准的不断推广和应用,相信未来的在线身份验证将会更加安全、便捷和私密。
什么是硬编码
硬编码是软件开发中的一种实践,它直接将数据嵌入到程序的源代码中,区别于从外部获取或在运行时动态生成数据。此类数据一旦固定,就需要通过修改源代码和重新编译才能变更,比如物理常数、版本号和静态文本这类不会变的信息。与之相反,软编码则涉及用户输入、服务器响应或配置文件这类动态内容,在程序运行时确定。
硬编码在数字版权管理(DRM)中也有所应用。开发人员可能会将序列号或私钥硬编码,试图通过这种方式限制软件的使用。然而,这种做法并非无懈可击,因为破解者可以将有效的序列号硬编码到程序中,绕过授权验证,使得非法副本无需输入许可即可共享相同的密钥,只要这个密钥在程序中被硬编码,破解就成为可能。
OpenSSL密钥和OpenSSH密钥格式
SSH的密钥格式与OpenSSL的密钥格式存在显著差异。OpenSSL密钥格式被视为通用标准,适用于多种应用程序,而OpenSSH密钥格式则是SSH的实际标准,虽然不具有通用性。
SSH公钥格式通常以如下形式呈现,以本机公钥为例:中间的数据段通过Base编码后转换为二进制格式,遵循特定的格式规则,例如在OpenSSH源码中常见的前四个字节表示数据长度,随后是相应长度的数据部分。深入分析本机公钥的内部结构,可以发现遵循特定的格式规则,可以解析出其组成部分。
OpenSSH私钥格式与公钥有所不同,但整体思路相似。私钥包含数据结构和密钥完整内容,遵循特定的数据格式规则。
对于OpenSSL密钥格式的理解,可以参考之前关于DSA密钥格式解析的文章。以OpenSSL格式的RSA公钥为例,根据数据格式和完整内容,可以解析出公钥内部数据结构。
通过解析OpenSSL和OpenSSH的密钥格式具体内容以及它们之间的差异,我们可以获取有关密钥内容的详细信息,包括查看密钥内容的相关命令和其他相关概念。深入学习和挖掘这些信息,有助于更全面地理解密钥格式。
RSA加密算法对字符串加密(C++语言)看见你之前回答过这个问题,可不可以把源代码给我?
我来说几句没代码的吧,另外我是搞JAVA的!
RSA是不对称的加密算法,涉及到一对密钥:公钥和私钥,公钥是公开的,别人想给我发送信息就用公钥进行加密,私钥是自己独有,收到别人发送的密文,就用私钥进行解密。
生成公钥与私钥
选择一对不同的、足够大(是后面的n大于消息数)的素数p、q,计算n=p*q,f(n)=p*q。
找一个与f(n)互质的数e,计算d,让d*e模f(n)=1(打不出同余符号,就是让d*e与1模f(n)结果一样)。
公钥(e,n),私钥(d,n)
设明文为M,
加密:密文=M的e次方 mod n
解密:明文=密文的d次方 mod n
例子:取p=5、q=。
n=,f(n)=,
去e=3
d=,
公钥(3,),私钥(,)
对字符串 “FLY”加密,先将按A-1,B-2……,z-将其数字化,得到6,,
6的3次方mod=,
的3次方mod=,
的3次方mod=5,
密文,,5
解密:
的次方mod=6,
的次方mod=
5的次方mod=,
基本思路就这样,不过实现过程会涉及到大数,推荐一个算mod的方法:
(A+B)的n次方对C取模,设A mod C=0,那么(A+B)的n次方mod C=B的n次方mod C,
以上面的次方mod为例:
的次方=的3次方的9次方=的9次方,=*+,
那么的次方mod=(*+)的9次方mod=的9次方mod,
以此类推,上式继续=的三次方mod=的三次方mod=6;
å¦ä½å©ç¨OpenSSLåºè¿è¡RSAå å¯å解å¯
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<openssl/rsa.h>
#include<openssl/engine.h>
int main(int argc, char* argv[])
{
printf("openssl_test begin\n");
RSA* rsa=NULL;
char originstr[]="hello\n"; //è¿æ¯æ们éè¦å å¯çåå§æ°æ®
//allocate RSA structureï¼é¦å éè¦ç³è¯·ä¸ä¸ªRSAç»æé¢ç¨äºåæ¾çæçå ¬ç§é¥ï¼è¿érsaå°±æ¯è¿ä¸ªç»æä½çæé
rsa = RSA_new();
if(rsa==NULL)
{
printf("RSA_new failed\n");
return -1;
}
//generate RSA keys
BIGNUM* exponent;
exponent = BN_new(); //çæRSAå ¬ç§é¥ä¹åéè¦éæ©ä¸ä¸ªå¥æ°ï¼odd numberï¼æ¥ç¨äºçæå ¬ç§é¥
if(exponent ==NULL)
{
printf("BN_new failed\n");
goto FAIL1;
}
if(0==BN_set_word(exponent,)) //è¿ééæ©å¥æ°
{
printf("BN_set_word failed\n");
goto FAIL1;
}
//è¿émodulusçé¿åº¦éæ©ï¼å°äºçmodulusé¿åº¦é½æ¯ä¸å®å ¨çï¼å®¹æè¢«ç ´è§£
if(0==RSA_generate_key_ex(rsa,,exponent,NULL))
{
printf("RSA_generate_key_ex failed\n");
goto FAIL;
}
char* cipherstr = NULL;
//åé ä¸æ®µç©ºé´ç¨äºåå¨å å¯åçæ°æ®ï¼è¿ä¸ªç©ºé´ç大å°ç±RSA_sizeå½æ°æ ¹æ®rsaç®åº
cipherstr = malloc(RSA_size(rsa));
if(cipherstr==NULL)
{
printf("malloc cipherstr buf failed\n");
goto FAIL1;
}
//ä¸é¢æ¯å®é çå å¯è¿ç¨ï¼æåä¸ä¸ªåæ°padding typeï¼æ以ä¸å ç§ã
/
*RSA_PKCS1_PADDINGPKCS #1 v1.5 padding. This currently is the most widely used mode.
RSA_PKCS1_OAEP_PADDING
EME-OAEP as defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty encoding parameter. This mode is recommended for all new applications.
RSA_SSLV_PADDING
PKCS #1 v1.5 padding with an SSL-specific modification that denotes that the server is SSL3 capable.
RSA_NO_PADDING
Raw RSA encryption. This mode should only be used to implement cryptographically sound padding modes in the application code. Encrypting user data directly with RSA is insecure.
*/
//è¿éé¦å ç¨å ¬é¥è¿è¡å å¯ï¼éæ©äºRSA_PKCS1_PADDING
if(RSA_size(rsa)!=RSA_public_encrypt(strlen(originstr)+1,originstr,cipherstr,rsa,RSA_PKCS1_PADDING))
{
printf("encryption failure\n");
goto FAIL2;
}
printf("the original string is %s\n",originstr);
printf("the encrypted string is %s\n",cipherstr);
//Now, let's decrypt the string with private key
//ä¸é¢æ¥ç¨ç§é¥è§£å¯ï¼é¦å éè¦ä¸ä¸ªbufferç¨äºåå¨è§£å¯åçæ°æ®ï¼è¿ä¸ªbufferçé¿åº¦è¦è¶³å¤ï¼å°äºRSA_size(rsa)ï¼
//è¿éåé ä¸ä¸ªé¿åº¦ä¸ºçå符æ°ç»ï¼åºè¯¥æ¯å¤ç¨çã
char decrypted_str[];
int decrypted_len;
if(-1=(decrypted_len=RSA_private_decrypt(,cipherstr,decrypted_str,rsa,RSA_PKCS1_PADDING)))
{
printf("decryption failure\n");
goto FAIL2;
}
printf("decrypted string length is %d,decryped_str is %s\n",decrypted_len,decrypted_str);
FAIL2:
free(cipherstr);
FAIL1:
BN_free(exponent);
FAIL:
RSA_free(rsa);
return 0;
}
以ä¸æ¯æºä»£ç ï¼ä¸é¢ä½¿ç¨ä¸é¢çç¼è¯å½ä»¤å¨æºç æå¨è·¯å¾ä¸çæå¯æ§è¡æ件
gcc *.c -o openssl_test -lcrypto -ldl -L/usr/local/ssl/lib -I/usr/local/ssl/include
å ¶ä¸ï¼-lcryptoå-ldlæ¯å¿ é¡»çï¼åè æ¯OpenSSLä¸çå å¯ç®æ³åºï¼åè æ¯ç¨äºæåå è½½å¨æåºã
2025-01-28 03:07
2025-01-28 02:47
2025-01-28 02:39
2025-01-28 02:33
2025-01-28 01:48
2025-01-28 00:48