皮皮网

【app源码搭建详细】【linuxtop命令源码】【氢能源码】网关源码_网关源码怎么用

时间:2024-12-26 03:06:02 分类:百科 来源:锦绣源码

1.使用Gateway作为SpringCloud网关
2.kong 网关插件快速开发指南
3.SpringCloud之网关服务(gateway)
4.Ocelot:.NET开源API网关提供路由管理、网关网关服务发现、源码源码用鉴权限流等功能
5.gateway和zuul的区别与联系
6.五分钟k8s实战-Istio 网关

网关源码_网关源码怎么用

使用Gateway作为SpringCloud网关

       本着能用原生就用原生的网关网关原则,我们这里使用SpringGateway来作为云服务的源码源码用网关

       配置

       从官网的介绍来看,spring网关拥有的网关网关功能有,路由(配置,源码源码用app源码搭建详细过滤,网关网关重写等),源码源码用熔断以及流量控制

       首先引入包

       动态路由

       路由的网关网关配置比较简单,有两种方法:使用配置文件和代码注入,源码源码用我们这里简单展示下两种方法

       或者使用

       路由配置中id、网关网关uri、源码源码用order、网关网关predicates.path/host没什么好说的源码源码用,根据需求配置即可,网关网关filters相关参数,这里最好还是参考源码相关部分或者Spring Cloud Gateway比较全面,比如常用的前缀切割

       这里我们以常用的两种filter,流量控制和熔断降级举例

       流量控制

       通常我们需要限流来保证服务的linuxtop命令源码可用性,保护一些不太稳定的服务不会因为高并发的请求而挂掉,这里我们一般在网关层做流量控制,减少实际进入的请求达到平波峰的目的

       计数器算法

       如果某个服务会在请求中数量达到时候挂掉,请求平均时间为2s,我们给一段时间一个请求量的限制,比如2秒次,每次请求进入就减少计数,每2s开始时重新计数,这样就能保证服务请求中数量在以内。但是对于抢购类接口,可能前ms请求数量就用完了,后面所有请求都被拒绝,即请求突刺现象,这样的用户体验是非常差的所以我们需要尽可能在所有的时间内保证接口的可用性(计数器算法就像DRAM中的集中式刷新一样不太能被接受),而且短时间内大量请求运行在相同代码段是非常危险的,在设计不好的情况很可能会出现数据库死锁等等问题

       漏桶算法

       我们需要让请求尽可能地能进行来,就需要平波峰填波谷,就上例而言,氢能源码2s内最大请求为,也就是每个请求占用的时间比例为ms,我们设计一个容量为的桶(队列)每ms向接口发一个请求,可以让服务中请求数量不超过的情况下,每ms都能接受一个新的请求,这样就缓解了请求突刺现象。但是这里还有一个问题,对于抢购类接口,个容量可能ms就用完了,在第ms可能还会有个请求抢1个位置,个请求会被取消,这样也是相对来说不能被接受的

       令牌桶算法

       令牌桶算法就是目前spring cloud gateway采用的算法,这里采用的用户时间换用户失败的策略,假设我们认为用户的平均忍耐时间为8秒,接口超过8秒一些用户就要骂街了,减去实际执行的2秒,也就是说我们的可以利用6秒的时间容纳更多的请求。依上文而言每ms去调用这个端口,elo算法源码那么也就是说桶的设计可以更大,在桶里放上令牌,每个请求需要在桶里面拿到令牌才能调用,这里的桶容量就是6s/ms为个。但是我们的执行速度是不变的,也就是结果是,在请求多的情况下用户的执行时间在8秒左右,而在请求少的情况下执行速度在2s左右,这样就缓解了短时间内大量请求导致大量失败的问题了。这里比较重要的参数有两个,第一个是桶请求容量 defaultBurstCapacity,第二个是每秒执行的请求速度(也就是桶的填充速率)defaultReplenishRate

       在这个例子中defaultBurstCapacity=而defaultReplenishRate=,这两个参数我们会在下方配置

       这里我们需要引用redis包,再说明一下,本站使用的是jdk的版本,其他版本的配置和引用可能会稍有变化,需要调整

       覆写KeyResolver的实现类

       流量控制,这里同样有代码实现和配置文件实现,小树量化源码由于目前idea对于复杂配置文件的支持不太好,如果使用配置文件方式会疯狂报红,但是如果全部使用代码的话会不方便实现动态路由,因为gateway是先加载配置再处理代码的。所以这里我们路由使用配置,filter之类复杂的使用代码实现,下面是简单示例

       这样全服务层面的接口流量控制就完成了,具体的哪些服务使用流量控制,具体控制参数的配置,自行稍作修改即可

       测试流量控制的话,可以将令牌回复量和令牌总容量调至比较低的水平,然后再浏览器直接curl接口,比如令牌回复量和容量为1,则单秒内curl即可触发浏览器提示,线上大令牌容量测试能需要多线程curl了,这里参考官方文档给的lua脚本

       ip限流

       如果我们需要对某个ip进行限流,比如防止脚本抢货,我们这里需要KeyResolver的实现不再使用exchange.getRequest().getURI().getPath() ,而是使用 exchange.getRequest().getRemoteAddress() 。但是这里还有一个问题,我们请求是经过层层转发的,nginx,docker等,所以我们可能并不能拿到原始的请求地址,所以这里我们需要在最外层,比如nginx中将原始地址存到header或者cookie当中,这里给出简单示例

       当然还有其他类似X-Forwarded-For的字段不再本文主要探讨范围就不多拓展了,在nginx中配置记录初始远程地址到header后,我们这里需要在程序中取出来,如果你这里使用的标准的X-Real-IP的字段去存储,那么只需要

       即可获取真实地址,如果你这里自定义了一个header的key那么需要在exchange.getRequest().getHeaders()里面自己找出来了

       最后我们这里给出对同一个接口同时配置两种限流的示例

       我在ip限流这里修改了返回的code由改为了,方便测试,这里我们将ip的限流参数设置为(2,2),将path的限流参数设置为(1,)然后不断请求接口就发现一开始返回错误,后续path令牌桶用完后返回错误,即设置成功

       补充

       如果这里你不希望返回,并且要求返回一个用户可读的带有json信息结果,那么比较好的业务处理方式是前端完成。如果是对外接口的话,那么我们这里就只能重写RateLimiter的实现了,不再使用RedisRateLimiter的类,而是自己去继承RateLimiter接口去实现,

       参考 SpringCloudGateway限流后,默认返回的改造:改跳转或增加响应body,这篇文章已经很详细,这里就不赘述了

       熔断降级

       熔断降级,即某个接口调用失败时使用其他接口代替,来保证整体服务对外的可用性

       首先需要引入熔断包

       circuitbreaker-reactor-resilience4j 熔断的相关配置分为两个部分,熔断逻辑本身的配置以及在集成到gateway中时候,网关的配置,熔断的重要的配置有,触发熔断的接口,代替接口,熔断超时时间(当然还有其他的,比如自定义熔断HttpStatus等等,详细参数参考 Spring Cloud Circuit Breaker以及resilience4j官网)

       这里熔断触发接口和代替接口配置位于gateway中,这里我们使用代码实现,位置参考前述

       这里setName的目的是和熔断包中的配置产生对应关系,下方为熔断包的配置,这里定义默认超时时间(也就是没有匹配到name的超时时间)为s,your_breaker_id的超时时间为3s

       最后

       到这里网关的基本功能就差不多了,自定义的一些业务功能配置,比如header,cookie,以及调用方ip的处理逻辑等等其实都是在网关层处理的,可以参考 Spring Cloud Gateway WebFilter Factories以及Writing Custom Spring Cloud Gateway Filters,但是这种配置基本都没什么坑,这里就不谈了

       网关由于不经常作为业务逻辑被重构,所以网络上的资料相对比较少,我这里使用的又是最新的版本还是蛮多和前版本不一样的地方,尤其是webflux的一些东西,很多问题需要看源码才能解决,非常的消耗意志力。这里建议小伙伴们如果是业务使用的这种资料相对较少的架构,最好还是不要使用最新版本的比较好,毕竟万一遇到坑,踩个一两天是很正常的事情,而这种在业务场景可能就没那么容易接受了

kong 网关插件快速开发指南

       通过使用kong网关插件,开发流程变得简单明了且高效。kong插件项目主要包含三个文件:handler.lua负责处理插件逻辑,schema.lua定义配置文件,而rockspec文件用于插件安装。逻辑处理代码根据openresty的不同处理阶段分为不同函数,根据插件功能只需在相应函数内添加自定义业务逻辑。

       以开发一个简单的灰度发布流量分发插件为例,其功能仅是根据/ThreeMammals...,对于更多.NET开源项目,可以参考一个专注于.NET开源项目推荐的榜单。此外,Ocelot适用于各种云环境和平台,如Azure、AWS和GCP等。

       无论是构建微服务架构还是优化API管理,Ocelot都是值得信赖的开源工具。如果你正在寻找一个功能强大的.NET API网关,Ocelot无疑是一个值得深入研究的选项。

gateway和zuul的区别与联系

       gateway和zuul的区别与联系体现在性能、源代码维护组织中。

       1、性能

       spring cloud Gateway有一个全新的非堵塞的函数式Reactive Web框架,可以用来构建异步的、非堵塞的、事件驱动的服务,在伸缩性方面表现非常好,使用非阻塞API,Websockets得到支持,并且由于它与Spring紧密集成。Zuul是一个基于阻塞io的API Gateway,Zuul已经发布了Zuul2.x,基于Netty,也是非阻塞的,支持长连接,但Spring Cloud暂时还没有整合计划。

       2、源代码维护组织

       spring cloud Gateway是spring旗下spring cloud的一个子项目。还有一种说法是因为zuul2连续跳票和zuul1的性能表现不是很理想,所以催生了spring孵化Gateway项目。zuul则是netf1ix公司的项目,只是spring将zuul集成在spring cloud中使用而已。关键目前spring不打算集成zuul2.x。

Spring Cloud Gateway中几个重要的概念:

       1、路由:路由是网关最基础的部分,路由信息有一个ID、一个目的URL、一组断言和一组Filter组成。如果断言路由为真,则说明请求的URL和配置匹配。

       2、断言:匹配的规则。Java8中的断言函数。Spring Cloud Gateway中的断言函数输入类型是Spring5.0框架中的ServerWebExchange。Spring Cloud Gateway中的断言函数允许开发者去定义匹配来自于/crossoverJie...找到。

copyright © 2016 powered by 皮皮网   sitemap