本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【愉快赚源码】【极乐盒子源码】【源码网站整站】htmlui源码

2025-01-27 12:45:29 来源:热点 分类:热点

1.使用note++开发SAP WebClient UI
2.ComfyUI学习笔记01,源码ComfyUI安装
3.elementui源码学习之仿写一个el-timeline
4.Android 14 HWUI 源码研究 View Canvas RenderThread ViewRootImpl skia
5.stable-diffusion-webui源码分析(10)-unet网络结构
6.element ui upload 源码解析-逐行逐析

htmlui源码

使用note++开发SAP WebClient UI

       通过简单的源码配置,你完全可以利用你喜爱的源码HTML编辑器(如Notepad++),来编辑你的源码UI组件视图或BSP应用的HTML源代码。在SE设置中指定你本地HTML源代码编辑器(.exe文件)的源码绝对路径即可实现。

       在BSP_WD_CMPWB或SE中,源码愉快赚源码通过菜单栏选择“编辑”-“启动本地HTML编辑器”即可。源码接着,源码你的源码本地HTML编辑器会自动打开并加载给定的视图源代码。

       背后的源码机制并不神秘。一旦选择了“编辑-本地”菜单,源码首先会检索本地编辑器exe文件的源码路径;然后,获取当前HTML视图的源码源代码并存储在内部表source中;接着,将HTML视图的源码源代码下载并存储在你本地机器上的临时文件中;最后,本地编辑器被启动以打开步骤3中生成的源码临时文件,至此完成整个流程。

       如果你渴望获取更多Jerry的原创文章,请务必关注公众号"汪子熙"。

ComfyUI学习笔记,ComfyUI安装

       欢迎来到ComfyUI的学习之旅!这是一篇关于ComfyUI的安装步骤的笔记,旨在帮助您顺利完成安装并启动使用。

       安装流程分为两种方式:一种是使用ComfyUI官方提供的整合包,另一种是通过git克隆源代码。官方整合包提供了运行所需的全部环境,操作简单。您只需下载一个压缩包(7z格式),使用常见解压软件将其解压。解压后,您将看到一个名为“python_embeded”的文件夹,其中包含了运行所需的Python环境、pytorch及其他包。极乐盒子源码

       启动运行有两种选择:如果您没有Nvidia显卡,可选择“run_cpu.bat”;若有Nvidia显卡,推荐使用“run_nvidia_gpu.bat”。双击相应的脚本即可启动。

       启动后,您将看到一个默认地址为“.0.0.1:”的网页窗口,这代表安装和启动已成功完成。如果需要安装模型文件,只需将它们放在“models/checkpoints”文件夹下,并通过点击右侧的“Refresh”按钮刷新列表。新添加的模型文件将立即显示在左侧的“Load Checkpoint”中。

       对于那些已经安装了Stable Diffusion webui的用户,可以通过git克隆ComfyUI源代码,借助webui的环境来启动。首先,您需要将源代码克隆到本地。如果您不熟练使用命令行,也可以使用GitHub官方客户端操作。

       接着,激活webui目录下的venv环境,选择使用conda启动或指定webui安装文件夹下的venv里的python来运行。具体步骤根据您之前安装webui的方式决定。

       对于手动安装的需求或特定硬件(如AMD显卡在Linux环境下),请参考ComfyUI官网提供的详细步骤。无论是Windows、Mac还是Linux环境,ComfyUI都能满足您的需求。

       最后,希望这篇笔记能帮助您顺利完成ComfyUI的安装,并开始您的生成之旅。欢迎在过程中遇到任何问题时,源码网站整站寻求进一步的帮助和指导。祝您学习顺利!

elementui源码学习之仿写一个el-timeline

       本文记录了仿写el-timeline组件的细节,以深入理解饿了么UI组件的实现机制。本系列文章将持续更新,深入探讨elementui源码的学习与实践。可访问开源仓库,通过npm start运行代码,结合注释辅助理解。

       时间线组件构成包括:时间线小圆点、时间线竖线条、时间戳与具体内容详情四个部分。如图所示。

       时间线组件主要需求包括:按时间线正序或倒序展示、自定义时间线小圆点样式与颜色、使用小图标替代时间线小圆点、控制时间戳与具体内容详情的位置、时间戳的显示与隐藏。

       对官方组件的见解包括:提供与注入可以简化、时间戳位置优化、简约封装参考其他库组件。Antd与iview的时间线组件参数较为精简。

       回顾知识点:数组方法的使用,如this.$slots.default.reverse();以及`:style`中的四元表达式应用,如`:style="border: ${ elementIcon} ${ borderColor}"`。

       组件代码示例如下:`myTimeline`、`myTimelineItem`。完整代码在开源仓库,欢迎访问并star。

       若本文对您有所助益,期待您的java源码软件star,感谢支持!

Android HWUI 源码研究 View Canvas RenderThread ViewRootImpl skia

       HUWUI是Android系统中负责应用可视化元素绘制的核心组件,其架构主要在C++层实现,从Java层接收View绘制信息,通过唯一的渲染线程使用skia技术完成渲染任务。整体上,从应用程序到UI线程,再到渲染线程,形成了清晰的层级关系。

       HUWUI的构建主要包括三个核心类,它们分别是:RecordingCanvas、Canvas、RenderNode、RenderProxy、RenderThread、CanvasContext、IRenderPipeline。在Java层,主要涉及两类Canvas,RecordingCanvas用于记录绘制指令,Canvas则是直接用于渲染。RecordingCanvas在构造时创建,而Canvas在调用时创建。这两个类在C++层分别对应SkiaRecordingCanvas和SkiaCanvas,后者直接引用SkCanvas。

       在全局循环中,UI线程与渲染线程之间的协同操作至关重要。具体流程包括:新创建Activity后,附着到对应的PhoneWindow,然后调用PhoneWindow的setContentView方法,将View添加到DecorView作为子节点。led风扇源码接着,DecorView与ViewRootImpl对接,完成View的更新与渲染。整个过程包含了measure、layout和draw等复杂子流程。

       渲染线程创建与核心对象紧密关联,主要包括RenderProxy、RenderThread和DrawFrameTask。RenderProxy负责Java层信息的衔接,RenderThread作为进程唯一的渲染线程,持有DrawFrameTask和CanvasContext,完成一帧的绘制任务。指令记录流程的核心在于使用C++层的RecordingCanvas将View属性和绘制信息记录到DisplayList中,进而完成指令的渲染。

       Surface、ANativeWindow、EGLSurface的创建流程在ViewRootImpl的performTraversals函数中初始化。ReliableSurface的封装和EGL与Skia环境的创建主要在RenderThread的requireGlContext函数中实现。从源码分析,这一过程通常在三个地方调用。

       View树与RenderNode树之间的协作关系明确,一个Application进程对应多个Activity,每个Activity与一个PhoneWindow绑定,PhoneWindow持有DecorView,DecorView对应一个ViewRootImpl,而ViewRootImpl与ThreadedRender模块对接。ThreadedRender与C++层的RenderProxy一一对应,RenderProxy持有关键对象,如RenderThread、CanvasContext、DrawFrameTask等。RenderThread是单例模式,进程唯一,负责一帧绘制的逻辑。

       在RenderPipeline模块中,关键操作包括makeCurrent、draw和swapBuffers。Native Canvas在这一过程中扮演了桥梁角色,接收Java API调用,而RecordingCanvas完成Op记录,最终DisplayListData存储这些Op。

       skia的核心资源主要在三个使用场景中发挥作用,具体细节需深入分析,这些资源对于实现高效、稳定的渲染效果至关重要。

stable-diffusion-webui源码分析()-unet网络结构

       stable-diffusion-webui的源码分析深入探讨了unet网络结构在AI绘图中的关键作用。unet在去噪过程中起着核心作用,它接收prompt特征、latent特征和时间步特征,通过下采样和上采样过程生成新的特征。稳定扩散模型的unet结构基于原始unet,并进行了定制以嵌入文本信息。在webui的实现中,关键代码位于openaimodel.py,其中包含大量的初始化参数和组件,如ResnetBlock、SpatialTransformer和DownSample等。

       模型的构建通过__init__方法进行,参数丰富,配置文件v1-inference.yaml定义了这些参数。初始化代码中,会检查输入参数的有效性,并设置一些变量。时间编码(time_embed)是一个维度的向量,通过多个MLP层生成。input_blocks部分的conv_nd是卷积层,其参数根据配置进行设置,TimestepEmbedSequential则负责传递时间信息给各个模块。

       unet的结构复杂,包括内嵌的ResBlock和SpatialTransformer模块,以及通过循环进行的下采样和上采样。每层模块的添加和参数设置都有特定条件,如基于分辨率的注意力机制。通过分析,我们看到模型如何整合时间步和文本信息,通过ResBlock处理隐变量,通过SpatialTransformer实现注意力机制。

       最后,DownSample和UpSample模块用于调整特征的空间分辨率。总的来说,unet网络结构是stable-diffusion-webui中AI绘图背后的重要技术基础,深入理解其细节对于掌握AI创作过程至关重要。

element ui upload 源码解析-逐行逐析

       Element UI上传组件(upload)源码解析涉及多个核心环节,从封装的Ajax到组件内部的逻辑处理,每一部分都紧密相连,共同实现文件的上传功能。本文将深入解析这些环节,以提供一个全面且直观的理解。

       首先,我们关注的是Ajax封装的基础,这包括对XMLHttpRequest的掌握与基本使用步骤的理解。XMLHttpRequest为实现异步通信提供了基础,Element UI通过此方式实现在上传过程中与服务器的交互。在封装的Ajax代码中,我们着重探讨其基本逻辑与执行流程,以确保上传操作在不阻塞用户界面的前提下进行。

       接下来,我们将焦点转移到`upload`组件本身。这一组件封装了文件上传的整个过程,包括文件选择、预览、以及最终的上传操作。组件代码解析从`upload.vue`开始,通过`render`函数的解析,我们能够理解组件如何将HTML结构呈现出来,同时结合`div`和`input`属性的细节,深入理解组件的内部逻辑。

       `render`函数的解析尤为关键,它涉及到组件如何响应用户操作,以及如何将上传文件的状态和行为展示给用户。组件的`props`参数定义了如何接收外部数据,并通过`data`参数设置组件的内部状态。`methods`部分则包含了关键的业务逻辑,如文件选择改变时的`handleChange`方法,以及实际开始上传的`uploadFiles`和`upload`方法。

       在`uploadFiles`和`upload`方法的代码细节中,我们关注的是如何处理文件上传的请求,包括组装请求参数、调用HTTP请求以及返回Promise以确保异步操作的正确处理。组件设计时采用大量回调函数,通过定义并执行这些回调,将成功或失败的信息传递给父组件,实现了上传过程的可见性和控制。

       点击事件的处理在组件中扮演着核心角色,它直接影响到用户与上传组件的交互体验。通过分析`render`函数中的具体代码细节,我们可以深入理解组件如何响应用户的点击,以及如何与文件选择和上传过程集成。

       `upload-list`组件用于展示文件列表,其逻辑包括文件列表的展示以及文件的预览功能。通过定义`upload-list`参数,组件能够高效地管理文件集合,为用户提供直观的文件管理界面。

       对于`tabindex`属性的讨论,我们深入解析了其在组件中的应用,包括如何影响键盘导航、以及如何通过设置`tabindex`值来控制元素的优先级。通过理解`tabindex`的全局属性和其对DOM元素行为的影响,我们能更好地构建可访问性强的组件。

       在`upload-dragger`组件中,我们关注的焦点在于如何实现文件拖拽上传功能。通过技术点解析,我们深入理解了如何利用事件监听和DOM操作来实现这一交互特性,为用户提供更便捷的文件上传方式。

       `parseInt`在某些情况下可能用作数据转换或计算,但其在`upload`组件中的具体应用可能需要根据上下文进行具体分析。组件设计时的细节处理,如`uploadDisabled`、`listType`和`fileList`等参数的使用,以及`watch`和`computed`属性的配置,都对组件的动态行为和状态管理至关重要。

       在`methods`部分,我们关注`handleStart`、`handleProgress`和`getFile`等方法的逻辑分析,理解其在文件上传过程中的作用,以及如何处理文件开始上传、上传进度以及获取文件信息等关键事件。

       `abort`方法的使用是为了在用户取消上传操作时提供控制,通过调用子组件的`abort`方法并传入文件对象,实现对指定文件上传的终止。这一功能增强了用户体验,提供了对上传操作的灵活控制。

       在解析组件的`beforeDestroy`生命周期钩子时,我们关注组件销毁前的清理工作,确保资源被正确释放,避免内存泄漏。通过理解`render`函数中的`h`函数的使用,我们可以深入探索组件如何构建和更新其HTML结构。

       本文旨在提供Element UI上传组件源码解析的全面视图,通过详细的代码解析和逻辑分析,帮助开发者深入理解组件的核心实现和设计原则。解析过程中关注的每一个技术点,都是构建高效、用户友好的上传功能不可或缺的部分。最后,我们对Element UI团队的努力表示感谢,他们的贡献为前端开发者提供了强大的工具和资源,促进了技术社区的发展和创新。

相关推荐
一周热点