1.Android进程间通信之bindService篇
2.找到卡顿来源,源码BlockCanary源码精简分析
3.一文分析Binder机制和AIDL的分析理解
4.深度分析Binder线程池的启动流程
5.Android Binder Hookçå®ç°
6.Android Activity Deeplink启动来源获取源码分析
Android进程间通信之bindService篇
在Android的进程间通信中,binder是源码一种核心机制,广泛应用于四大组件之一的分析Service。本文专注于使用Service与binder结合的源码bindservice通信方式,探讨其实现方法与关键特性。分析节水系统源码
创建Service作为服务端,源码其主要功能是分析向客户端提供接口。创建Service的源码方式包括扩展binder类、使用Messenger和AIDL。分析扩展binder类适用于服务端与客户端在同进程场景,源码不具备跨进程能力,分析因此这里不详细说明。源码使用Messenger能实现跨进程通信,分析特点是源码请求放入队列,服务端无需线程安全设计,但在实际项目中使用较少。
AIDL(Android Interface Definition Language)是一种便捷实现跨进程通信的工具。它支持客户端并发访问,要求服务端实现线程安全设计。创建.aidl文件定义接口,服务端和客户端均需包含源码。实现AIDL接口的实例在onBind()接口返回给客户端,使得客户端能调用接口。
使用AIDL的关键技术点在于通过IPC调用传递对象。支持Java语言原语类型、String、CharSequence、List和Map等数据类型传递。对于自定义对象,必须实现Parcelable接口,以完成序列化。在Android 及以上版本中,可直接定义Parcelable对象。滑块dll源码AIDL工具在编译时协助生成序列化代码。
在方法中使用Bundle参数时,需在解析前显式设置ClassLoader。这样能确保Bundle中对象正确加载。
本文总结了使用binder和bindservice实现Java端与Java端跨进程通信的方式,并简单概述了AIDL工具的关键技术点。使用bindservice结合AIDL,能在多个场景下有效实现Java应用之间的高效通信。
找到卡顿来源,BlockCanary源码精简分析
通过屏幕渲染机制我们了解到,Android的屏幕渲染是通过vsync实现的。软件层将数据计算好后,放入缓冲区,硬件层从缓冲区读取数据绘制到屏幕上,渲染周期是ms,这让我们看到不断变化的画面。如果计算时间超过ms,就会出现卡顿现象,这通常发生在软件层,而不是硬件层。卡顿发生的原因在于软件层的计算时间需要小于ms,而计算的执行地点则在Handler中,具体来说是在UI的Handler中。Android进程间的交互通过Binder实现,线程间通信通过Handler。
软件层在收到硬件层的vsync信号后,会在Java层向UI的Handler中投递一个消息,进行view数据的计算。这涉及到测量、布局和绘制,通常在`ViewRootImpl`的`performTraversals()`函数中实现。因此,view数据计算在UI的京东飞鸟源码Handler中执行,如果有其他操作在此执行且耗时过长,则可能导致卡顿,我们需要找到并优化这些操作。
要找到卡顿的原因,可以通过在消息处理前后记录时间,计算时间差,将这个差值与预设的卡顿阈值比较。如果大于阈值,表示发生了卡顿,此时可以dump主线程堆栈并显示给开发者。实现这一功能的关键在于在Looper中设置日志打印类。通过`Looper.loop()`函数中的日志打印,我们可以插入自定义的Printer,并在消息执行前后计算时间差。另一种方法是在日志中添加前缀和后缀,根据这些标志判断时间点。
BlockCanary是一个用于检测Android应用卡顿的工具,通过源码分析,我们可以了解到它的实现逻辑。要使用BlockCanary,首先需要定义一个继承`BlockCanaryContext`的类,并重写其中的关键方法。在应用的`onCreate()`方法中调用BlockCanary的安装方法即可。当卡顿发生时,BlockCanary会通知开发者,并在日志中显示卡顿信息。
BlockCanary的核心逻辑包括安装、事件监控、堆栈和CPU信息的采集等。在事件发生时,会创建LooperMonitor,同时启动堆栈采样和CPU采样。当消息将要执行时,ubuntu手机源码开始记录开始时间,执行完毕后停止记录,并计算执行时间。如果时间差超过预设阈值,表示发生了卡顿,并通过回调传递卡顿信息给开发者。
堆栈和CPU信息的获取通过`AbstractSampler`类实现,它通过`post`一个`Runnable`来触发采样过程,循环调用`doSample()`函数。StackSampler和CpuSampler分别负责堆栈和CPU信息的采集,核心逻辑包括获取当前线程的堆栈信息和CPU速率,并将其保存。获取堆栈信息时,通过在`StackSampler`类中查找指定时间范围内的堆栈信息;获取CPU信息时,从`CpuSampler`类中解析`/proc/stat`和`/proc/mpid/stat`文件的CPU数据,并保存。
总结而言,BlockCanary通过在消息处理前后记录时间差,检测卡顿情况,并通过堆栈和CPU信息提供详细的卡顿分析,帮助开发者定位和优化性能问题。
一文分析Binder机制和AIDL的理解
深入了解Android进程间通信机制,如同破解系统奥秘的钥匙,它在源码探索和问题解决中扮演着核心角色。Binder机制,源自OpenBinder,正是这个领域的主角,它弥补了Linux原生通信方式在性能和安全性的短板。它的运作涉及驱动层与应用层的无缝对接,包括与系统服务如Activity Manager Service (AMS) 的深度协作。 Binder,作为Java编写的通信工具包,是源码学习技巧Android多进程通信的基石。尽管AIDL(Android Interface Definition Language)常用于简化这一过程,但并非不可或缺。让我们通过一个实例,不依赖AIDL,来揭示Binder通信的内在机制。想象一个简单的场景:一个客户端(ClientBinder)与服务端(ServerBinder,继承自Binder并实现onTransact方法)之间的字符串传递,透彻理解Binder通信的运作原理。 项目框架中,服务端在Service的onBind方法中返回一个ServerBinder实例。对比手动实现与AIDL生成的代码,AIDL的便捷性便一目了然。客户端通过ServiceConnection,如下面这段代码,与远程服务建立连接:1. 创建ServiceConnection,获取远程服务的IBinder
2. intent设置服务类名:"com.binder.server.RemoteService"
3. bindService(intent, serviceConnection, Context.BIND_AUTO_CREATE)
4. 若未连接,尝试bindService
5. 传递数据:通过IBinder调用mStingEditText的文本,如data.writeString(text)
6. 成功连接后,调用transact方法传递请求
接收数据的环节,服务端将数据展示在tvShowMessage上,通过新线程处理,如`new Handler().post(() -> ServerMainActivity.tvShowMessage.setText(message));`。当连接断开时,serviceConnection的onServiceDisconnected方法会被触发。 关键在于客户端如何通过IBinder获取服务端对象并调用transact进行跨进程通信。AIDL的引入让这个过程更加优雅,例如在ClientMainActivityUseAidl中,服务连接成功后,通过IBinder代理mServer,调用自定义接口IShowMessageAidlInterface的showMessage方法。 在交互过程中,客户端通过IShowMessageAidlInterface的Stub内部类,将本地的IBinder转换为接口,这样数据的发送就通过showMessage方法进行。AIDL的asInterface方法负责封装本地或远程处理,Proxy类则负责数据的打包和跨进程传输,确保数据的无缝传递。 总结来说,客户端利用AIDL的asInterface处理远程IBinder,而Proxy类则是这一切的幕后功臣。服务端的onBind方法返回AIDL生成的Stub,它在客户端调用transact时负责接收和处理请求,执行showMessage方法。这样,AIDL生成的Stub和Proxy成为客户端发送数据的桥梁,而在服务端,它们则是数据处理的核心所在。 掌握Binder机制和AIDL的精髓,你将解锁Android进程间通信的无尽可能,为你的应用开发增添无限力量。无论何时,当你深入探索Android源码,这些核心原理都将是你不可或缺的指南。深度分析Binder线程池的启动流程
理论基础Binder
Binder它是Android中的一种进程间通信机制,它主要采用的是CS架构模式。Binder框架中主要涉及到4个角色Client、Server、ServiceManager及Binder驱动,其中Client、Server、ServiceManager运行在用户空间,Binder驱动运行在内核空间。
线程池线程池它是一种用于多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。线程池线程都是后台线程。每个线程都使用默认的堆栈大小,以默认的优先级运行,并处于多线程单元中。
简单的说:线程池就是创建一些线程,它们的集合称为线程池。
Binder线程池启动流程我们知道一个新的app应用程序进程在创建完成之后,它会通过调用RunTimeInit类的静态成员函数zygoteInitNative来进行启动Binder线程池。
Binder线程池启动过程中,主要调用几个关键函数:ZygoteInitNative--->onZygoteInit--->startThreadPool。
下面的源码分析主要是以android5.0版本为例。
ZygoteInitNative源码分析由于ZygoteInitNative函数是java实现的代码,实践上最终调用的是由C++实现的JNI方法。以下代码来源于系统的/frameworks/base/core/jni/androidRuntime.cpp文件中
staticvoidcom_android_internal_os_RuntimeInit_nativeZygoteInit(JNIEnv*env,jobjectclazz){ //gCurRuntime是个全局的变量,后面跟上的是另外实现的方法。gCurRuntime->onZygoteInit();}onZygoteInit源码分析onZygoteInit函数在需要源码的位置:/frameworks/base/cmds/app_process/app_main.cpp文件中。
该函数是个虚函数,并且是一个无返回值和无参数的函数virtualvoidonZygoteInit(){ //Re-enabletracingnowthatwe'renolongerinZygote.atrace_set_tracing_enabled(true);//获取进程的状态信息sp<ProcessState>proc=ProcessState::self();//打印日志信息ALOGV("Appprocess:startingthreadpool.\n");//启动线程池proc->startThreadPool();}startThreadPool源码分析startThreadPool系统实现在\frameworks\native\libs\binder\ProcessState.cpp文件中。
每一个支持Binder进程间通信机制的进程内都有一个唯一的ProcessState对象,当这个ProcessState对象的成员函数StartThreadPool函数被第一次调用的时候,它就会在当前进程中启动一个线程池,并将mThreadPoolStarted这个成员变量设置为true。
//该函数是个无参数,无返回值的函数voidProcessState::startThreadPool(){ AutoMutex_l(mLock);//判断线程池是否启动状态,启动的话就将标志信息设置为true属性。if(!mThreadPoolStarted){ mThreadPoolStarted=true;spawnPooledThread(true);}}总结Binder在android底层中是一个非常重要的机制,我们在实际的项目调用过程中,我们在app应用程序中只要实现自己的Binder本地对象的时候,跟其他服务一样,只需要将它进行启动起来,并且进行注册到ServerMananger就可以了。至于内部的实现一般是不需要去关心的。
Android Binder Hookçå®ç°
Binder Hook å¯ä»¥ Hook æå½åè¿ç¨ç¨å°çç³»ç» Service æå¡ã以 LocationManager 为ä¾ï¼å¨è·åä¸ä¸ª LocationManager æ¶å为两æ¥ï¼
(1) è·å IBinder 对象ï¼
(2) éè¿ IBinder ç asInterface() æ¹æ³è½¬å为 LocationMangerService 对象ï¼æ¥çåå§å LocationManager ã
application å±ç¨å°çé½æ¯ LocationManager 对象ã
åçï¼
æ´ä¸ªè¿ç¨éè¦å©ç¨åå°è®¾ç½®ä¸ä¸ªèªå®ä¹ç Binder 对象åä¸ä¸ªèªå®ä¹ç Service 对象ãç±äºæä»¬åª Hook å ¶ä¸ä¸é¨åçåè½ï¼å ¶ä»åè½è¿éè¦ä¿çï¼æ以è¦ç¨å¨æ代ççæ¹å¼å建èªå®ä¹å¯¹è±¡ã
å¨ç解åé¢çå 容åä½ éè¦äºè§£è¿äºç¥è¯ç¹ï¼
Activity çç±»å¨è·åç³»ç» Service æ¶ï¼é½æ¯è°ç¨ getSystemService(serviceName) æ¹æ³è·åçã
Context # getSystemService() æ¹æ³æç»ä¼è°ç¨å° ServiceManager # getService() æ¹æ³ä¸ã以 LocationManager 对åºç ServiceFetcher 为ä¾ï¼å®ç createService() æ¹æ³æºç å¦ä¸ï¼
åå¦æä»¬è¦ Hook æ LocationManager # getLastKnownLocation() æ¹æ³ï¼ä¸æé½æ¯ï¼ãæ们è¦åçå°±æ¯è®©
ServiceManager.getService(Context.LOCATION_SERVICE) è¿åæ们èªå®ä¹ç Binder 对象ã
å çä¸ä¸è¿ä¸ªæ¹æ³çæºç ï¼
sCache æ¯ä¸ä¸ª Mapï¼ç¼åäºå·²ç»åç³»ç»è¯·æ±è¿ç Binderãå¦æéè¦è®©è¿ä¸ªæ¹æ³è¿åæ们èªå·±ç binder 对象ï¼åªéè¦äºå å¾ sCache ä¸ put ä¸ä¸ªèªå®ä¹ç Binder 对象就è¡äºã
å¨ put ä¹åï¼éè¦å å建åºä¸ä¸ªèªå®ä¹ç Binderãè¿ä¸ª Binder å¨è¢« ILocationManager.Stub.asInterface å¤çåï¼å¯ä»¥è¿åä¸ä¸ªèªå®ä¹ç LocationManagerService 对象ã
å çä¸ä¸ Binder ç asInterface() çå®ç°ï¼
å¦ææ queryLocalInterface()æ¹æ³è¿åä¸ä¸ªèªå®ä¹çServiceï¼ä½¿å¾èµ° if è¯å¥å é¨ï¼ä¸èµ° elseï¼é£å°±ç®æ¯Hook æåäºã
å设æ们æ³è®©ç³»ç»ç LocationManager è¿åçä½ç½®ä¿¡æ¯å ¨æ¯å¨å¤©å®é¨(., .)ãé£æ们éè¦ä½¿å¾ LocatitionManagerService ç getLastLocation() æ¹æ³ è¿åçå ¨æ¯ (., .)ã
ç±äºæ们ä¸è½ç´æ¥æ¿å°ç³»ç»çè¿ä¸ªService对象ï¼å¯ä»¥å ç¨åå°çæ¹å¼æ¿å°ç³»ç»çLocationManagerServiceãç¶åæ¦æª getLastLocation() æ¹æ³ã
åççBinder对象å¨è°ç¨ queryLocalInterface() æ¹æ³æ¶ä¼è¿ååççService对象ãæ们å¸æè¿å3.1ä¸çèªå®ä¹Serviceãæ以è¿éæ¦æª queryLocalInterface() æ¹æ³ã
æäºèªå®ä¹ç Binder åï¼å°å®æ³¨å ¥å° ServiceManger ç sCache åéä¸å°±å®æ Hook äº~
å½onClick被è°ç¨çæ¶åï¼ToaståLogé½ä¼æ¾ç¤ºå¤©å®é¨çåæ (., .)ãè¯æHookæåï¼
ä½ çè³å¯ä»¥ç¨Binder Hookçæ¹å¼Hookæ ActivityManagerã
Android Activity Deeplink启动来源获取源码分析
Deeplink在业务模块中作为外部应用的入口提供,不同跳转类型可能会导致应用提供不一致的服务,通常通过反射调用Activity中的mReferrer字段获取跳转来源的包名。然而,mReferrer存在被伪造的风险,可能导致业务逻辑出错或经济损失。因此,我们需要深入分析mReferrer的来源,并寻找更为安全的获取方法。
为了深入了解mReferrer的来源,我们首先使用搜索功能在Activity类中查找mReferrer,发现其在Attach方法中进行赋值。进一步通过断点调试跟踪调用栈,发现Attach方法是由ActivityThread.performLaunchActivity调用的。而performLaunchActivity在调用Attach时,传入的referrer参数实际上是一个ActivityClientRecord对象的referrer属性。深入分析后,发现referrer是在ActivityClientRecord的构造函数中被赋值的。通过进一步的调试发现,ActivityClientRecord的实例化来自于LaunchActivityItem的mReferrer属性。接着,我们分析了mReferrer的来源,发现它最终是由ActivityStarter的setCallingPackage方法注入的。而这个setCallingPackage方法的调用者是ActivityTaskManagerService的startActivity方法,进一步追踪调用链路,我们发现其源头是在App进程中的ActivityTaskManager.getService()方法调用。
在分析了远程服务Binder调用的过程后,我们发现获取IActivityTaskManager.Stub的方法是ActivityTaskManager.getService()。这使得我们能够追踪到startActivity方法的调用,进而找到发起Deeplink的应用调用的具体位置。通过这个过程,我们确定了mReferrer实际上是通过Activity的getBasePackageName()方法获取的。
为了防止包名被伪造,我们注意到ActivityRecord中还包含PID和Uid。通过使用Uid结合包管理器的方法来获取对应的包名,可以避免包名被伪造。通过验证Uid的来源,我们发现Uid实际上是通过Binder.getCallingUid方法获取的,且Binder进程是无法被应用层干涉的,因此Uid是相对安全的。接下来,我们可以通过Uid来置换包名,进一步提高安全性。
总结,mReferrer容易被伪造,应谨慎使用。通过使用Uid来获取包名,可以提供一种更为安全的获取方式。此过程涉及对源代码的深入分析和调试,作者Chen Long为vivo互联网客户端团队成员。
Framework层的Binder(源码分析篇)
本文以android-.0.0_r的AOSP分支为基础,解析framework层的Binder工作原理。
从ServiceManager的getService方法入手,其核心代码是通过getIServiceManager().getService(name)获取服务。首先,ServiceManager的实现与进程中的ProcessState密切相关,ProcessState是单例,负责打开和映射Binder驱动。构造函数中,它会初始化驱动、验证版本并设置线程数,接着进行binder映射。
在ProcessState的getContextObject方法中,调用native函数android_util_Binder.cpp中的getContextObject()。这个函数通过handle 0(ServiceManager的handle)获取BpBinder对象,然后通过javaObjectForIBinder函数将其转换为Java中的类型。
进一步分析,BpBinder与java层的Binder之间存在对应关系,通过BinderProxy NativeData创建单例的BinderProxy。然后,每个服务的BinderProxy实例化和计数处理都在这个过程中完成。ServiceManagerNative.asInterface方法简化了getIServiceManager的调用,通过调用asInterface实例化ServiceManagerProxy。
IServiceManager接口通过AIDL生成,其代理类ServiceManagerProxy实际上是不必要的。aidl文件在编译时生成对应java代码,用于binder通信。通过aidl文件,我们可以看到如queryLocalInterface等方法的实现细节。
在Parcel的协助下,客户端与服务端进行数据传递,通过序列化和反序列化进行交互。在transact函数中,对Parcel大小进行检查,避免数据传输过大导致的问题。最后,客户端与binder驱动的通信过程涉及了Transaction数据的写入、等待响应、数据处理和内存回收等步骤。
总的来说,framework层的Binder工作涉及服务管理、数据转换、通信协议和内存管理等环节,理解这些有助于深入掌握Binder的工作机制。
AndroidFramework ä¹å¯å¨ ServiceManager
æ¬ææºç åºäº Android ï¼æ¶åç¸å ³æºç å¦ä¸ãServiceManagaer æ¯ Binder çå®æ¤è¿ç¨ï¼å¨ Binder æºå¶ä¸èµ·çéè¦çä½ç¨ãæ¬æå°ä»æºç çè§åº¦å¯¹å ¶è¿è¡åæï¼æ´ä½æµç¨å¦ä¸ï¼
æ¶åºå¾å¦ä¸ã
å æ¥çç ServiceManager æ¯å¦ä½å¯å¨çï¼
å¨ Zygote ä¸æä¸è¯´è¿ï¼ init è¿ç¨å¯å¨ç第äºé¶æ®µä¼è§£æ init.rc æ件ã
å¨è¿ä¹åä¼è§¦å trigger init ã
ç»å init.rc çç action init åäºä»ä¹ã
å½è§¦å trigger init åï¼ä¼å¯å¨ servicemanager æå¡ï¼å ¶å£°æå¦ä¸ã
对åºçæ§è¡æ件为 /system/bin/servicemanager ï¼å¨ç¼è¯åä½äº frameworks/native/cmds/servicemanager ä¸ï¼æ¥çç Android.bp ã
å ¶å¯¹åºçæºç 为 service_manager.c å binder.c ï¼å ¥å£å½æ° main() ä½äº servicemanager.c ã
å¯å¨å® ServiceManager åä¼æå¼ Binder 驱å¨ã
å¨ main() ä¸é¦å è°ç¨ binder_open() ã
binder_open() 主è¦åäºå¦ä¸äºæ ï¼
ç»ç»æä½ binder_state åé å åã
ç³»ç»è°ç¨ open() æå¼ /dev/binder ï¼å¦ææå¼é©±å¨å¤±è´¥ï¼åæ§è¡ fail_open éæ¾å åã
ç®åç解éä¸ä¸ä»ä¹æ¯ç³»ç»è°ç¨ï¼
ç±äºéè¦éå¶ä¸åçç¨åºä¹é´ç访é®è½åï¼é²æ¢ç¨åºè·åå«çç¨åºçå åæ°æ®ï¼ CPU åååºä¸¤ä¸ªæéç级ï¼ç¨æ·æå å æ ¸æã
ææçç¨æ·ç¨åºé½æ¯è¿è¡å¨ç¨æ·æï¼ä½ææ¶éè¦åä¸äºå æ ¸æçäºæ ï¼èå¯ä¸å¯ä»¥åè¿äºäºæ çå°±æ¯æä½ç³»ç»ï¼æ以ç¨åºéè¦åæä½ç³»ç»å起请æ±ï¼ä»¥ç¨åºçååæ¥æ§è¡è¿äºæä½ãè¿æ¶å°±éè¦ä¸ä¸ªä»ç¨æ·æåæ¢å°å æ ¸æä½ä¸è½æ§å¶å æ ¸æä¸æ§è¡çæºå¶ï¼è¿ç§æºå¶å°±æ¯ ç³»ç»è°ç¨ã
ç³»ç»è°ç¨ ioctl() ä¼ å ¥ BINDER_VERSION å½ä»¤è·å Binder 驱å¨çæ¬ï¼å¯¹æ¯çæ¬æ¯å¦ä¸è´ï¼ä¸ä¸è´åæ§è¡ fail_open éæ¾å åã
ç³»ç»è°ç¨ mmap() æ å° kb çå å空é´ï¼å³æ Binder 驱å¨æ件ç kb æ å°å°å å空é´ä¾ ServiceManager 使ç¨ï¼å åæ å°å¤±è´¥åæ§è¡ fail_map ï¼å ³é fd 并éæ¾å åã
ServiceManager è¿ç¨ mmap çå å大å°å¯ä»¥éè¿ adb shell å½ä»¤æ¥çã
å¯ä»¥çå°å åæ å°å°å为 0xff ~ 0xf ï¼å·®ä¸º 0x å³åè¿å¶ç kb ã
æå¼ Binder 驱å¨åä¼å° ServiceManager 设置为ä¸ä¸æ管çè ã
è°ç¨ binder_become_context_manager() ã
android æ°å¢ BINDER_SET_CONTEXT_MGR_EXT å½ä»¤æ¥è®¾ç½®å®å ¨çä¸ä¸æ管çè ï¼å¦æ设置失败ï¼å使ç¨åæç BINDER_SET_CONTEXT_MGR å½ä»¤æ¥è®¾ç½®ä¸ä¸æ管çè ï¼ä¸¤è åºå«å¨äºæ¯å¦æºå¸¦åæ°ã
æåä¼è¿å ¥å¾ªç¯ï¼ä» Binder 驱å¨è¯»åå解ææ°æ®ã
è°ç¨ binder_loop() è¿å ¥å¾ªç¯ï¼ä¸æå°éè¿ç³»ç»è°ç¨ ioctl() ä» Binder 驱å¨è¯»åæ°æ®ï¼å¹¶éè¿ binder_parse() è¿è¡æ°æ®è§£æã
注æè¿éè°ç¨ binder_loop() ä¼ å ¥ç svcmgr_handler() ï¼åé¢ä¼ä½¿ç¨å°ã
binder_write() ä¼å°è£ struct binder_write_read ï¼å¹¶éè¿ç³»ç»è°ç¨ ioctl() å°å¯¹åºçå½ä»¤ä¼ éç» Binder 驱å¨ã
binder_parse() ç¨æ¥è§£æä» Binder 驱å¨è¯»åå°çæ°æ®ï¼ç¶åæ ¹æ®ä¸åçå½ä»¤æ§è¡å¯¹åºçæä½ã
å 为 cmd å½ä»¤å¯è½æå¤ä¸ªï¼æ以éè¿ while 循ç¯æ¯æ¬¡å¤çä¸ä¸ª cmd å½ä»¤ï¼å¤ cmd çç»æ大è´å¦ä¸å¾æ示ã
è¿ééç¹çä¸ BR_TRANSACTION å½ä»¤ã
BR_TRANSACTION æ¯ Binder 驱å¨å Server 端åé请æ±æ°æ®ã
binder_transaction_data çç»æå¦ä¸ï¼å ¶è¡¨æäº transcation ä¼ è¾çå ·ä½è¯ä¹ï¼è¯ä¹ç è®°å½å¨ code ä¸ï¼ä¸åè¯ä¹ç æºå¸¦çæ°æ®æ¯ä¸åçï¼è¿äºæ°æ®ç± data æå®ã
å¨è§£æå® binder_transaction_data çå ·ä½è¯ä¹åï¼ä¼è°ç¨åé¢ä¼ ç» binder_loop() ç svcmgr_handler() ï¼å ¶å®å°±æ¯ switch case è¯ä¹ç åä¸åçäºæ ã
ServiceManager çåè½å ¶å®å¾ç®åï¼
è³æ¤ ServiceManager å°±åæå®äºã
2024-12-27 14:28
2024-12-27 14:05
2024-12-27 13:39
2024-12-27 13:39
2024-12-27 13:06
2024-12-27 13:02
2024-12-27 12:18
2024-12-27 12:10