1.物联网设备常见的web服务器——uhttpd源码分析(二)
2.利用Python爬虫爬取淘宝商品做数据挖掘分析实战篇,超详细教程
3.使用openwrt路由(例极路由3(HC5861))过校园网多设备检测(非破解) (宿舍共网)
物联网设备常见的web服务器——uhttpd源码分析(二)
uHTTPd 是一个专为 OpenWrt/LUCI 开发者设计的轻量级 Web 服务器,致力于实现稳定高效的服务器功能,以适应嵌入式设备的特殊需求。它默认与 OpenWrt 的配置框架(UCI)整合,成为 OpenWrt Web 管理界面 LuCI 的付费课程源码组成部分,同时也能够提供常规 Web 服务器所需的全部功能。
在 uHTTPd 的内部结构中,`run_server` 函数是核心,其详细实现主要依赖于 `uloop_init` 函数。在 `uloop_init` 内,`epoll_create` 函数负责创建一个用于监听事件的 epoll 文件描述符,它在内核中分配空间来存放感兴趣的 socket 文件描述符,用于检测是否发生事件。最大关注数量为 ,为优化性能提供了良好的基础。详细分析和深入探讨请参考相关资源。
接下来,`fcntl` 函数通过改变已打开文件的性质来实现对文件的控制,具体操作包括改变描述符的属性,为后续的服务器操作提供灵活性。关于这一函数的使用,详细内容可参考相关技术文档。
`uh_setup_listeners` 函数在服务器配置中占有重要地位,主要关注点在于设置监听器的北大青鸟和源码时代哪个好回调函数。这一过程确保了当通过 epoll 有数据到达时,能够调用正确的处理函数。这一环节是实现高效服务器响应的关键步骤。
`setsockopt` 函数被用于检查网络异常后的操作,通过设置选项层次(如 SOL_SOCKET、IPPROTO_TCP 等)和特定选项的值,实现对网络连接的优化与控制。此功能的详细解释和示例请查阅相关开源社区或技术资料。
`listener_cb` 函数是 uHTTPd 的关键回调函数之一,它在 epoll 事件发生时被调用,用于处理客户端连接。其后,`uh_accept_client` 函数负责实际的连接接受过程,通过 `calloc` 函数分配内存空间,并返回指向新分配内存的指针。这一步骤确保了分配的内存空间被初始化为零,为后续数据处理做好准备。
`accept` 函数在客户端连接请求处理中扮演重要角色,它从服务器监听的 socket 中接收新的连接请求,并返回一个用于与客户端通信的新的套接字描述符。对于这一函数的具体实现和使用细节,可以参考相关技术论坛或开发者文档。
`getsockname` 函数用于服务器端获取相关客户端的地址信息,这对于维护连接状态和进行数据传输具有重要意义。香奈儿包的网页设计源码此函数的详细用法和示例可查阅相关技术资源。
`ustream_fd_init` 函数通过回调函数 `client_ustream_read_cb` 实现客户端数据的真正读取,而 `client_ustream_read_cb` 则负责操作从客户端读取的数据,确保数据处理的高效性和准确性。
利用Python爬虫爬取淘宝商品做数据挖掘分析实战篇,超详细教程
项目内容
案例选择商品类目:沙发;数量:共页个商品;筛选条件:天猫、销量从高到低、价格元以上。
以下是分析,源码点击文末链接
项目目的
1. 对商品标题进行文本分析,词云可视化。
2. 不同关键词word对应的sales统计分析。
3. 商品的价格分布情况分析。
4. 商品的销量分布情况分析。
5. 不同价格区间的商品的平均销量分布。
6. 商品价格对销量的影响分析。
7. 商品价格对销售额的影响分析。
8. 不同省份或城市的商品数量分布。
9. 不同省份的商品平均销量分布。
注:本项目仅以以上几项分析为例。
项目步骤
1. 数据采集:Python爬取淘宝网商品数据。
2. 数据清洗和处理。
3. 文本分析:jieba分词、wordcloud可视化。网络游戏源码哪里可以下载
4. 数据柱形图可视化barh。
5. 数据直方图可视化hist。
6. 数据散点图可视化scatter。
7. 数据回归分析可视化regplot。
工具&模块:
工具:本案例代码编辑工具Anaconda的Spyder。
模块:requests、retrying、missingno、jieba、matplotlib、wordcloud、imread、seaborn等。
原代码和相关文档后台回复“淘宝”下载。
一、爬取数据
因淘宝网是反爬虫的,虽然使用多线程、修改headers参数,但仍然不能保证每次%爬取,所以,我增加了循环爬取,直至所有页爬取成功停止。
说明:淘宝商品页为JSON格式,这里使用正则表达式进行解析。tp6路由源码解析
代码如下:
二、数据清洗、处理:
(此步骤也可以在Excel中完成,再读入数据)
代码如下:
说明:根据需求,本案例中只取了item_loc、raw_title、view_price、view_sales这4列数据,主要对标题、区域、价格、销量进行分析。
代码如下:
三、数据挖掘与分析:
1. 对raw_title列标题进行文本分析:
使用结巴分词器,安装模块pip install jieba。
对title_s(list of list格式)中的每个list的元素(str)进行过滤,剔除不需要的词语,即把停用词表stopwords中有的词语都剔除掉:
为了准确性,这里对过滤后的数据title_clean中的每个list的元素进行去重,即每个标题被分割后的词语唯一。
观察word_count表中的词语,发现jieba默认的词典无法满足需求。
有的词语(如可拆洗、不可拆洗等)却被cut,这里根据需求对词典加入新词(也可以直接在词典dict.txt里面增删,然后载入修改过的dict.txt)。
词云可视化:
安装模块wordcloud。
方法1:pip install wordcloud。
方法2:下载Packages安装:pip install 软件包名称。
软件包下载地址:lfd.uci.edu/~gohlke/pyt...
注意:要把下载的软件包放在Python安装路径下。
代码如下:
分析
1. 组合、整装商品占比很高;
2. 从沙发材质看:布艺沙发占比很高,比皮艺沙发多;
3. 从沙发风格看:简约风格最多,北欧风次之,其他风格排名依次是美式、中式、日式、法式等;
4. 从户型看:小户型占比最高、大小户型次之,大户型最少。
2. 不同关键词word对应的sales之和的统计分析:
(说明:例如词语‘简约’,则统计商品标题中含有‘简约’一词的商品的销量之和,即求出具有‘简约’风格的商品销量之和)
代码如下:
对表df_word_sum中的word和w_s_sum两列数据进行可视化。
(本例中取销量排名前的词语进行绘图)
由图表可知:
1. 组合商品销量最高;
2. 从品类看:布艺沙发销量很高,远超过皮艺沙发;
3. 从户型看:小户型沙发销量最高,大小户型次之,大户型销量最少;
4. 从风格看:简约风销量最高,北欧风次之,其他依次是中式、美式、日式等;
5. 可拆洗、转角类沙发销量可观,也是颇受消费者青睐的。
3. 商品的价格分布情况分析:
分析发现,有一些值太大,为了使可视化效果更加直观,这里我们选择价格小于的商品。
代码如下:
由图表可知:
1. 商品数量随着价格总体呈现下降阶梯形势,价格越高,在售的商品越少;
2. 低价位商品居多,价格在-之间的商品最多,-之间的次之,价格1万以上的商品较少;
3. 价格1万元以上的商品,在售商品数量差异不大。
4. 商品的销量分布情况分析:
同样,为了使可视化效果更加直观,这里我们选择销量大于的商品。
代码如下:
由图表及数据可知:
1. 销量以上的商品仅占3.4%,其中销量-之间的商品最多,-之间的次之;
2. 销量-之间,商品的数量随着销量呈现下降趋势,且趋势陡峭,低销量商品居多;
3. 销量以上的商品很少。
5. 不同价格区间的商品的平均销量分布:
代码如下:
由图表可知:
1. 价格在-之间的商品平均销量最高,-之间的次之,元以上的最低;
2. 总体呈现先增后减的趋势,但最高峰处于相对低价位阶段;
3. 说明广大消费者对购买沙发的需求更多处于低价位阶段,在元以上价位越高平均销量基本是越少。
6. 商品价格对销量的影响分析:
同上,为了使可视化效果更加直观,这里我们选择价格小于的商品。
代码如下:
由图表可知:
1. 总体趋势:随着商品价格增多其销量减少,商品价格对其销量影响很大;
2. 价格-之间的少数商品销量冲的很高,价格-之间的商品多数销量偏低,少数相对较高,但价格以上的商品销量均很低,没有销量突出的商品。
7. 商品价格对销售额的影响分析:
代码如下:
由图表可知:
1. 总体趋势:由线性回归拟合线可以看出,商品销售额随着价格增长呈现上升趋势;
2. 多数商品的价格偏低,销售额也偏低;
3. 价格在0-的商品只有少数销售额较高,价格2万-6万的商品只有3个销售额较高,价格6-万的商品有1个销售额很高,而且是最大值。
8. 不同省份的商品数量分布:
代码如下:
由图表可知:
1. 广东的最多,上海次之,江苏第三,尤其是广东的数量远超过江苏、浙江、上海等地,说明在沙发这个子类目,广东的店铺占主导地位;
2. 江浙沪等地的数量差异不大,基本相当。
9. 不同省份的商品平均销量分布:
代码如下:
热力型地图
源码:Python爬取淘宝商品数据挖掘分析实战
使用openwrt路由(例极路由3(HC))过校园网多设备检测(非破解) (宿舍共网)
校园网多设备检测使用openwrt路由(如极路由3(HC))的步骤和技巧如下:
首先,你需要了解校园网可能采取的检测策略,包括基于IPv4数据包包头内的TTL字段的检测、基于HTTP数据包请求头内的User-Agent字段的检测(UA2F)、DPI(深度包检测技术)、基于IPv4数据包包头内的Identification字段的检测、基于网络协议栈时钟偏移的检测技术、Flash Cookie检测技术。这些检测方法可能会限制多设备接入。
针对极路由3(HC),采用Lean大佬的Openwrt源码进行编译,登陆IP为..1.1,密码为"password"。在编译时,确保TurboACC技术关闭,以免影响User-Agent字段,导致问题如微信无法发送。解决方法是执行命令"uci set ua2f.firewall.handle_mmtls=0 && uci commit ua2f"。
刷入Openwrt后,进行以下配置:
1. 启用NTP客户端和作为NTP服务器提供服务,填写候选NTP服务器为:ntp1.aliyun.com、time1.cloud.tencent.com、stdtime.gov.hk、pool.ntp.org。
2. 添加自定义防火墙规则。
3. 对UA2F进行配置,确保检测正确。
配置完成后,即可进行多设备检测。确认真实User-Agent显示正确,说明配置成功。一个宿舍内可用一台路由器加一个账号上网。
感谢Lean提供的Openwrt源码,参考关于某大学校园网共享上网检测机制的研究与解决方案,UA2F技术来自Zxilly/UA2F,修改IPID技术来自CHN-beta/rkp-ipid。祝学子们早日摆脱校园网限制。
2025-01-28 03:261811人浏览
2025-01-28 03:151085人浏览
2025-01-28 03:11737人浏览
2025-01-28 01:531014人浏览
2025-01-28 01:522411人浏览
2025-01-28 01:131056人浏览
70歲蘇女士不菸不酒,但因有肺癌家族史,為自己安排了健康檢查,發現雙側肺部有陰影,經醫師診斷為肺結節。進一步採達文西雙側肺分葉切除手術,手術結果發現一側為良性結節,一側為第一期肺腺癌,術後5日出院,恢
1.求一个简单又有趣的JAVA小游戏代码2.红色警戒游戏源代码被开源了!3.游戏代码如何找4.谷歌404页面html源码,带小恐龙游戏求一个简单又有趣的JAVA小游戏代码 以下是根据您的要求对文本