【codeigniter网站源码】【梦幻端游源码】【源码时代前端开发】jdk多线程源码_jdk1.8多线程

时间:2025-01-25 03:34:17 编辑:网页源码查看器源码 来源:专科论文要源码

1.Java并发编程解析 | 基于JDK源码解析Java领域中并发锁之StampedLock锁的多k多设计思想与实现原理 (三)
2.Java线程池实现原理及其在美团业务中的实践
3.惊艳!阿里内部JDK源码剖析知识手册,线程线程由浅入深堪称完美
4.太强了!源码阿里老哥分享的多k多JDK源码学习指南,含8大核心内容讲解
5.太强了!线程线程阿里内部传疯了的源码codeigniter网站源码JDK源码学习笔记,看完才发现差距不止一点点
6.知乎一天万赞!多k多华为JDK负责人手码JDK源码剖析笔记火了

jdk多线程源码_jdk1.8多线程

Java并发编程解析 | 基于JDK源码解析Java领域中并发锁之StampedLock锁的线程线程设计思想与实现原理 (三)

       在并发编程领域,核心问题涉及互斥与同步。源码互斥允许同一时刻仅一个线程访问共享资源,多k多同步则指线程间通信协作。线程线程多线程并发执行历来面临两大挑战。源码为解决这些,多k多设计原则强调通过消息通信而非内存共享实现进程或线程同步。线程线程

       本文探讨的源码关键术语包括Java语法层面实现的锁与JDK层面锁。Java领域并发问题主要通过管程解决。内置锁的粒度较大,不支持特定功能,因此JDK在内部重新设计,引入新特性,实现多种锁。基于JDK层面的锁大致分为4类。

       在Java领域,AQS同步器作为多线程并发控制的基石,包含同步状态、等待与条件队列、独占与共享模式等核心要素。JDK并发工具以AQS为基础,实现各种同步机制。

       StampedLock(印戳锁)是基于自定义API操作的并发控制工具,改进自读写锁,特别优化读操作效率。印戳锁提供三种锁实现模式,支持分散操作热点与削峰处理。在JDK1.8中,通过队列削峰实现。

       印戳锁基本实现包括共享状态变量、等待队列、读锁与写锁核心处理逻辑。读锁视图与写锁视图操作有特定队列处理,读锁实现包含获取、梦幻端游源码释放方式,写锁实现包含释放方式。基于Lock接口的实现区分读锁与写锁。

       印戳锁本质上仍为读写锁,基于自定义封装API操作实现,不同于AQS基础同步器。在Java并发编程领域,多种实现与应用围绕线程安全,根据不同业务场景具体实现。

       Java锁实现与运用远不止于此,还包括相位器、交换器及并发容器中的分段锁。在并发编程中,锁作为实现方式之一,提供线程安全,但实际应用中锁仅为单一应用,提供并发编程思想。

       本文总结Java领域并发锁设计与实现,重点介绍JDK层面锁与印戳锁。文章观点及理解可能存在不足,欢迎指正。技术研究之路任重道远,希望每一份努力都充满价值,未来依然充满可能。

Java线程池实现原理及其在美团业务中的实践

       随着计算机行业的飞速发展,摩尔定律逐渐失效,多核CPU成为主流。使用多线程并行计算逐渐成为开发人员提升服务器性能的基本武器。J.U.C提供的线程池ThreadPoolExecutor类,帮助开发人员管理线程并方便地执行并行任务。了解并合理使用线程池,是一个开发人员必修的基本功。本文开篇简述了线程池概念和用途,接着结合线程池的源码,帮助大家领略线程池的设计思路,最后回归实践,通过案例讲述使用线程池遇到的问题,并给出了一种动态化线程池解决方案。

       一、写在前面

1.1 线程池是源码时代前端开发什么

       线程池(Thread Pool)是一种基于池化思想管理线程的工具,经常出现在多线程服务器中,如MySQL。线程过多会带来额外的开销,包括创建销毁线程的开销、调度线程的开销等,同时也降低了计算机的整体性能。线程池维护多个线程,等待监督管理者分配可并发执行的任务。这种做法一方面避免了处理任务时创建销毁线程开销的代价,另一方面避免了线程数量膨胀导致的过分调度问题,保证了对内核的充分利用。本文描述的线程池是JDK中提供的ThreadPoolExecutor类。

1.2 线程池解决的问题是什么

       线程池解决的核心问题就是资源管理问题。在并发环境下,系统不能确定在任意时刻有多少任务需要执行,有多少资源需要投入。这种不确定性将带来以下问题:资源分配问题、线程调度问题等。线程池采用了“池化”思想来解决这些问题。Pooling是将资源统一管理的一种思想,不仅能应用在计算机领域,还在金融、设备、人员管理、工作管理等领域有相关应用。在计算机领域,表现为统一管理IT资源,包括服务器、存储、网络等,通过共享资源在低投入中获益。

       二、线程池核心设计与实现

       Java中的线程池核心实现类是ThreadPoolExecutor,本文基于JDK 1.8的源码来分析线程池的核心设计与实现。首先,我们通过ThreadPoolExecutor的UML类图了解其继承关系,然后深入探讨其设计与实现。

2.1 总体设计

       ThreadPoolExecutor实现的顶层接口是Executor,提供了一种思想:将任务提交和任务执行进行解耦。用户只需提供Runnable对象,esp 8266简单源码将任务的运行逻辑提交到执行器(Executor)中,由Executor框架完成线程的调配和任务的执行。ExecutorService接口增加了能力,如补充可以为一个或一批异步任务生成Future的方法以及提供管控线程池的方法,如停止线程池运行。

       AbstractExecutorService是上层的抽象类,将执行任务的流程串联起来,保证下层实现只需关注执行任务的方法。ThreadPoolExecutor作为最下层的实现类,实现最复杂的运行部分,负责维护自身的生命周期和管理线程与任务,使两者结合执行并行任务。

       ThreadPoolExecutor运行机制分为任务管理和线程管理两部分。任务管理充当生产者的角色,线程池会根据任务的流转决定执行流程。线程管理是消费者,维护线程池内的线程,根据任务请求进行线程分配。

2.2 生命周期管理

       线程池运行状态由内部维护,使用变量控制线程池的运行状态和有效线程数量。线程池内部使用AtomicInteger存储关键参数,实现线程池运行状态和线程数量的高效管理。线程池提供方法供用户获取当前运行状态和线程数量,通过位运算实现快速计算。

       ThreadPoolExecutor的运行状态有五种,包含生命周期转换。

2.3 任务执行机制

2.3.1 任务调度

       任务调度是线程池核心入口,用户提交任务后,决定任务执行流程。通过execute方法完成检查线程池状态、运行线程数和运行策略,决定执行流程,如直接申请线程执行或缓冲到队列执行,或直接拒绝任务。执行流程如下。

2.3.2 任务缓冲

       任务缓冲模块实现任务和线程的管理,通过生产者消费者模式和阻塞队列实现。阻塞队列缓存任务,工作线程从队列中获取任务。

2.3.3 任务申请

       任务执行有两种可能:直接由新创建的音乐素质测评源码线程执行或从队列中获取任务执行。线程从任务缓存模块不断获取任务,通过getTask方法实现线程管理和任务管理之间的通信。

2.3.4 任务拒绝

       任务拒绝策略保护线程池,实现拒绝策略接口定制策略或选择JDK提供的四种已有策略。拒绝策略特点如下。

2.4 Worker线程管理

2.4.1 Worker线程

       Worker线程实现Runnable接口,持有线程和任务,通过构造方法创建。Worker线程执行任务模型如下,线程池通过AQS实现独占锁,控制线程生命周期,回收线程。

2.4.2 Worker线程增加

       Worker线程增加通过addWorker方法实现,增加线程时考虑线程池状态,策略在上一步完成,仅完成增加线程并运行,最后返回成功结果。方法参数包括firstTask和core,用于指定任务和线程策略。

2.4.3 Worker线程回收

       Worker线程回收依赖JVM自动回收,线程池维护线程引用,通过添加和移除引用控制线程生命周期。Worker被创建后,不断获取任务执行,核心线程无限等待,非核心线程限时获取。当无法获取任务时,循环结束,Worker主动移除自身引用。

2.4.4 Worker线程执行任务

       Worker线程执行任务通过runWorker方法实现,执行流程如下。

三、线程池在业务中的实践

       业务实践中,线程池用于获取并发性,提供典型场景和问题解决方案。

3.1 业务背景

       互联网业界追求CPU多核性能,通过线程池管理线程获取并发性。常见场景包括快速响应用户请求和快速处理批量任务。

3.2 实际问题及方案思考

       线程池使用面临核心问题:参数配置困难。调研替代方案、参数设置合理性以及线程池参数动态化,动态化线程池提供简单有效的方法解决参数修改成本问题。

3.3 动态化线程池

       动态化线程池设计包括整体设计、功能架构,提供参数动态化、监控和告警能力。动态化线程池允许用户在管理平台上修改参数,实时生效,并监控线程池负载、任务执行情况,提供任务级别监控和运行时状态查看。

3.4 实践总结

       面对使用线程池的实际问题,动态化线程池提供成本效益平衡的解决方案,降低故障发生的概率,适用于业务需求。

       四、参考资料

       1. JDK 1.8 源码

       2. 维基百科-线程池

       3. 更好的使用Java线程池

       4. 维基百科Pooling(Resource Management)

       5. 深入理解Java线程池:ThreadPoolExecutor

       6. 《Java并发编程实践》

惊艳!阿里内部JDK源码剖析知识手册,由浅入深堪称完美

       在当前互联网寒冬中,提升核心竞争力显得尤为关键。对于Java开发者来说,深入理解JDK源码是提升自身实力的重要途径。近期,一位阿里架构师花费数月精心整理的《JDK源码剖析知识手册》值得关注,它以8个章节从浅入深解析JDK,涵盖了多线程基础、Atomic类、Lock与Condition、同步工具类、并发容器、线程池与Future、ForkJoinPool以及CompletableFuture等核心内容。

       多线程章节强调内存优化和效率提升,Atomic类则带你逐步揭开Concurrent包的层级结构。深入理解Lock与Condition,以及并发工具类背后的实现原理,将有助于编写更优雅、严谨的代码。并发容器的讲解,让你全面掌握包内各类工具的使用。线程池与Future的分析,揭示了高效任务管理的机制,ForkJoinPool和CompletableFuture的探讨则展示了并发编程的深度技巧。

       这本手册并非泛泛而谈,而是旨在帮助开发者实现质的飞跃。记住,不断学习和提升是成长的关键。现在,只需点击这里即可获取这份宝贵的资源,开始你的JDK源码探索之旅,为自己增添竞争优势。点击这里,踏上成为更好开发者之路。

太强了!阿里老哥分享的JDK源码学习指南,含8大核心内容讲解

       Java开发中,JDK源码的重要性不言而喻。作为Java运行环境的基石,JDK涵盖了Java的全部运行环境和开发工具,没有它,程序编译都无从谈起。为此,本文将分享一份来自阿里的资深程序员整理的JDK源码学习指南。

       这份指南详尽介绍了JDK源码的多个核心内容,包括多线程基础、Atomic类、Lock与Condition接口、同步工具类、并发容器、线程池与Future、ForkJoinPool分治算法、异步编程工具CompletableFuture等。需要这份资料的朋友,请点击此处获取完整版。

       以下是学习指南的具体章节:

       第1章 多线程基础

       第2章 Atomic类

       第3章 Lock与Condition

       第4章 同步工具类

       第5章 并发容器

       第6章 线程池与Future

       第7章 ForkJoinPool

       第8章 CompletableFuture

       以上就是这份JDK源码学习笔记的概述,感兴趣的朋友可以点击此处获取完整版资料。

太强了!阿里内部传疯了的JDK源码学习笔记,看完才发现差距不止一点点

       在闲暇之余,阅读JDK源码能加深对自己开发环境的理解,同时也大有裨益。本文为您介绍阿里巴巴发布的版JDK源码剖析,以展示其内部设计的精妙之处。通过阅读,您将发现与自身知识的差距远超想象。

       这份详尽的笔记对源码内容进行了精细划分,方便学习。以下是其章节概览:

多线程基础 Atomic类 Lock与Condition 同步工具类 并发容器 线程池与Future ForkJoinPool CompletableFuture

       请注意,由于笔记内容丰富,篇幅较长,本文仅展示部分章节概览。如有需要,可点击下方链接获取完整版资料。

知乎一天万赞!华为JDK负责人手码JDK源码剖析笔记火了

       探索JDK源码,无疑是提升编程技能的高效路径。随着时间的推移,JDK经过了精心打磨,代码结构紧凑,设计模式巧妙,运行效率卓越,凝聚了众多技术大牛的智慧结晶。要提升代码理解力,深入研究JDK源码是不可或缺的步骤。

       对于初学者来说,借助他人的深度解析文章无疑能事半功倍。这些文章犹如高人的指导,能让你在学习中站得更高,看得更远。现在,就为你推荐一份极具价值的JDK源码剖析资料。虽然由于篇幅原因,这里只能呈现部分精华内容:

       第1章:深入多线程基础

       第2章:原子操作的Atomic类解析

       第3章:Lock与Condition的深入理解

       第4章:同步工具类的实战讲解

       第5章:并发容器的奥秘揭秘

       第6章:线程池与Future的实践指南

       第7章:ForkJoinPool的工作原理

       第8章:CompletableFuture的全面解析

       想要获取完整的详细内容,可以直接点击以下链接获取:[传送门]

       如果你对源码学习有持续的热情,我的GitHub资源库也等待你的探索:[传送门]

喜提JDK的BUG一枚!多线程的情况下请谨慎使用这个类的stream遍历。

       在探讨问题之前,我们先回顾一下 LinkedBlockingQueue 的线程安全性。在传统的观点中,LinkedBlockingQueue 是线程安全的,因为它内部使用了 ReentrantLock。然而,就在 RocketMQ 的讨论版中,一个问题揭示了 LinkedBlockingQueue 在特定情况下的线程不安全性,引发了我们的好奇心。

       核心问题在于 LinkedBlockingQueue 的 stream 遍历方式,在多线程环境下可能出现死循环。我们通过一个简单的 demo 来深入分析这一现象。首先,引入了一个链接,其中详细展示了如何在多线程环境下复现这一 Bug。

       在分析代码之前,让我们先明确 demo 的基本逻辑:创建了 个线程,每个线程不断调用 offer 和 remove 方法。主线程则通过 stream 对 queue 进行遍历,目标是找到队列中的第一个非空元素。这看似是一个简单的遍历操作,但事实并非如此。

       关键点在于 tryAdvance 方法,看似平凡的遍历操作隐藏了陷阱。当运行代码时,预期的输出并未出现,而是陷入了一个死循环,控制台仅输出了一行信息或交替输出几次后停止。

       我们的疑问指向了 JDK 版本,尤其是 JDK 8。通过替换为 JDK ,我们观察到交替输出的效果。这使得我们大胆推测,这可能是 JDK 8 版本的 Bug。为了验证这一假设,我们进行了详细的分析。

       通过线程 dump 文件,我们发现主线程始终处于可运行状态,似乎没有被锁阻塞。然而,从控制台的输出来看,它似乎处于阻塞状态。这一现象让我们联想到一个经典的场景:线程陷入死循环。

       通过深入源码分析,我们发现了死循环的根源。在 stream 遍历的关键方法 tryAdvance 中,存在一个 while 循环,其条件始终满足,导致死循环。而问题的核心在于移除队列头部元素的代码逻辑,当有其他线程不断调用 remove 方法时,可能会形成特定的节点结构,触发死循环。

       经过详细的分析,我们揭示了这一 Bug 的原理,并通过简化代码演示了整个过程。通过将实例代码简化,我们揭示了死循环是如何在多线程环境下产生的。这不仅有助于理解 Bug 的本质,也为后续的 Bug 修复提供了思路。

       为了验证解决方案的正确性,我们对比了 JDK 8 和 JDK 的源码差异。在 JDK 中,通过引入了一个名为 succ 的方法,成功解决了死循环问题。这一方法通过确保节点不会指向自身,从而避免了死循环的产生。

       通过这篇文章的分析,我们不仅揭示了 LinkedBlockingQueue 在特定条件下的线程不安全性,还探讨了如何通过升级 JDK 版本、避免使用 stream 遍历,以及使用 synchronized 修饰符等方式来规避此类问题。同时,我们还延伸至其他数据结构,如 ConcurrentHashMap,讨论了它们在不同使用场景下的线程安全性问题。

       最后,我们再次强调在多线程环境下,LinkedBlockingQueue 的 stream 遍历方式可能存在一定的问题,可能会导致死循环。理解并解决这类 Bug,对于确保代码的健壮性和性能至关重要。

搜索关键词:miliplayer源码