欢迎来到【源码搜索软件】【parseint源码】【raspivid 源码】vit源码-皮皮网网站!!!

皮皮网

【源码搜索软件】【parseint源码】【raspivid 源码】vit源码-皮皮网 扫描左侧二维码访问本站手机端

【源码搜索软件】【parseint源码】【raspivid 源码】vit源码

2025-01-27 13:49:28 来源:{typename type="name"/} 分类:{typename type="name"/}

1.使用Cleanlab、PCA和Procrustes可视化ViT微调
2.轻松理解ViT(Vision Transformer)原理及源码
3.捋一捋Swin Transformer
4.swin transformer理解要点
5.源代码阅读+一个示例 详解timm库背后的create_model以及register_model函数

vit源码

使用Cleanlab、PCA和Procrustes可视化ViT微调

       在图像处理领域,与传统的CNN不同,基于Transformers架构的ViT模型因其在自然语言处理任务中的成功而被引入。微调这些模型以获得理想性能的源码搜索软件过程往往涉及精细的操作。下面,我们将通过一步步的示例,展示如何通过Cleanlab、PCA和Procrustes技术可视化ViT模型在CIFAR-数据集上的微调过程。

       首先,微调从预训练的ViT模型开始,使用CIFAR-的6万张和类标签。微调过程中,通过设置save_strategy和save_step来频繁保存检查点,确保动画有足够的parseint源码数据点。然后,利用Transformers库的AutoFeatureExtractor和automodel获取不同阶段模型的嵌入,每个嵌入都是维的。

       嵌入分析中,Cleanlab的离群值检测功能识别出分类错误的特征。接着,通过scikit-learn的PCA将维向量降维到2维,以便可视化。然而,PCA可能导致动画帧间出现不必要的轴翻转或旋转。为解决这个问题,我们应用了Procrustes Analysis进行几何变换,确保动画过渡平滑。

       在最终的动画制作中,我们使用make_pca和get_ood函数创建图表,raspivid 源码展示嵌入的二维分布和前8个异常值。此外,还会加载训练损失数据,以线形图的形式呈现。整个过程在Spotlight中进行最后检查,确保所有数据准确无误。

       这个可视化过程不仅有助于理解微调ViT模型的步骤,还是一个有效的教学工具,能够直观地展示模型调整的过程和结果。源代码可在GitHub上查看,作者为Markus Stoll。

轻松理解ViT(Vision Transformer)原理及源码

       ViT,即Vision Transformer,是将Transformer架构引入视觉任务的创新。源于NLP领域的slidetouch 源码Transformer,ViT在图像识别任务中展现出卓越性能。理解ViT的原理和代码实现在此关键点上进行。

       ViT的核心流程包括图像分割为小块、块向量化、多层Transformer编码。图像被分为大小为x的块,块通过卷积和展平操作转换为向量,最终拼接形成序列。序列通过多层Transformer编码器处理,编码器包含多头自注意力机制和全连接前馈网络,实现特征提取和分类。模型输出即为分类结果。

       具体实现上,Patch Embedding过程通过卷积和展平简化,将大小为x的sugarcrm 源码图像转换为x的向量序列。Transformer Encoder模块包括Attention类实现注意力机制,以及Mlp类处理非线性变换。Block类整合了这两个模块,实现完整的编码过程。

       VisionTransformer整体架构基于上述模块构建,流程与架构图保持一致。代码实现包括关键部分的细节,完整代码可参考相关资源。

       综上所述,ViT通过将图像分割与Transformer架构相结合,实现高效图像识别。理解其原理和代码,有助于深入掌握这一创新技术。

捋一捋Swin Transformer

       Swin Transformer是ICCV 的最佳论文,它证明了Transformer在视觉领域的通用性,特别体现在Swin-T模型上。其结构区别于ViT,采用4x4的初始切分和Window Attention,允许获取多尺度信息,适用于目标检测和语义分割。下面,我们通过源码解析Swin Transformer的工作原理。

       首先,Swin Transformer的架构包括PatchEmbed层,将图像切割成小patch,之后通过多个BasicLayer处理,每个BasicLayer由Swin Transformer Block和Patch Merging组成。与ViT不同,Swin-T的PatchEmbed使用4x4切分并逐渐增大patch尺寸,以实现多尺度变化。BasicLayer中的核心模块Swin Transformer Block包含两个Window Attention,一个在窗口内操作,另一个解决窗口间信息交流问题。

       Window Attention通过将输入分割成小窗口,降低计算复杂度,但通过shift操作引入了窗口之间的信息交互。Shifted Window Attention通过调整窗口位置并使用掩码来控制注意力,使得并行计算更高效。此外,Window Attention还包括了相对位置编码,增强对局部上下文的理解。

       Patch Merging则模仿CNN,通过合并小patch以提取不同分辨率的特征,有助于多尺度特征的提取。在实验中,Swin Transformer在图像分类、目标检测和语义分割等多个领域展现了出色性能,尽管面临如Convnext的竞争,但它在视觉领域的创新性和多模态潜力仍值得关注。

swin transformer理解要点

        这是跑通的分类以及分割源码介绍,大家有需要可以参考一下:

        1、 Swin-Transformer分类源码(已跑通)

        2、 Swin-Transformer分割源码(已跑通)

        3、 Swin-Unet(分割改编)

        我们假设图片的大小是×的,窗口大小是固定的,7×7。这里每个方框都是一个窗口,每个窗口是固定有7×7个patch,但是patch的大小是不固定的,它会随着patch merging的操作而发生变化。比如我们看这儿,patch大小是4×4的,那怎么变成8×8呢?我们把周边4个窗口的patch拼在一起,相当于patch扩大了2×2倍,从而得到8×8大小的patch。

        我们发现经过这一系列的操作之后,patch的数目在变少,最后整张图只有一个窗口,7个patch。所以我们可以认为降采样是指让patch的数量减少,但是patch的大小在变大。

        这便是对ViT的一个改进,ViT从头至尾都是对全局做self-attention,而swin-transformer是一个窗口在放大的过程,然后self-attention的计算是以窗口为单位去计算的,这样相当于引入了局部聚合的信息,和CNN的卷积过程很相似,就像是CNN的步长和卷积核大小一样,这样就做到了窗口的不重合,区别在于CNN在每个窗口做的是卷积的计算,每个窗口最后得到一个值,这个值代表着这个窗口的特征。而swin transformer在每个窗口做的是self-attention的计算,得到的是一个更新过的窗口,然后通过patch merging的操作,把窗口做了个合并,再继续对这个合并后的窗口做self-attention的计算。

        其实这边困扰了我一小下,因为我们印象中降采样都是像CNN一样,会变小,但是swin transformer没有给我们变小的感觉。其实这就是感受野没理解到位的问题,CNN到最后,设计适当,最后一个特征图的感受野是可以放大到整张图的,swin transformer最后一个stage也是一个窗口涵盖了整张图。

        Swin-transformer是怎么把复杂度降低的呢? Swin Transformer Block这个模块和普通的transformer的区别就在于W-MSA,而它就是降低复杂度计算的大功臣。

        关于复杂度的计算,我简单的给大家介绍一下,首先是transformer本身基于全局的复杂度计算,这一块儿讲起来有点复杂,感兴趣的同学我们可以会后一起探讨推导过程。在这里,我们假设已知MSA的复杂度是图像大小的平方,根据MSA的复杂度,我们可以得出A的复杂度是(3×3)²ï¼Œæœ€åŽå¤æ‚度是。Swin transformer是在每个local windows(红色部分)计算self-attention,根据MSA的复杂度我们可以得出每个红色窗口的复杂度是1×1的平方,也就是1的四次方。然后9个窗口,这些窗口的复杂度加和,最后B的复杂度为9。

        W-MSA虽然降低了计算复杂度,但是不重合的window之间缺乏信息交流,所以想要窗口之间的信息有所交流,那么就可以把左图演化成右图这样,但是这就产生了一个问题,如此操作,会产生更多的windows,并且其中一部分window小于普通的window,比如4个window -> 9个window,windows数量增加了一倍多。这计算量又上来了。因此我们有两个目的,Windows数量不能多,window之间信息得有交流。

        我们看到,原来的图被划分了9个窗口,中间的区域A就是信息交流的证明。我们先把左上部分(蓝色以外的窗口)移动到右下,然后再用切分四块的方法去切这个图片,这时候区域A就被隔出来了,达到了我们想要的效果。

        transformer的出现并不是为了替代CNN。因为transformer有着CNN没有的功能性,它不仅可以提取特征,还可以做很多CNN做不到的事情,比如多模态融合。而swin transformer就是一个趋势,将CNN与transformer各自的优势有效的结合了起来。这是暂时对它的一些细节补充。最近听说MLP出来了,还没有细看,时代进展未免也太快了,手里针对ViT改进的文章还没投出去,就已经开始要立不住脚了。

        希望可以帮助到大家,如果你觉得这篇文章对你有一定的帮助,那就点个赞支持一下吧!如果有什么问题的话也可以在文章下面评论,我们一起交流解决问题!

        以下是我所有文章的目录,大家如果感兴趣,也可以前往查看

        👉戳右边: 打开它,也许会看到很多对你有帮助的文章

源代码阅读+一个示例 详解timm库背后的create_model以及register_model函数

       深入理解timm库的核心,本文将重点剖析create_model和register_model这两个关键函数的工作原理。timm库以其封装的便捷性和SOTA模型集成而闻名,但内部细节往往被隐藏。本文将通过一个实例,揭示create_model的全貌,包括register_model的作用,帮助读者更好地掌握这两个函数的使用。

       首先,create_model从model_name入手,如vit_base_patch_,通过parse_model_name函数将其解析。这个过程包括urlsplit函数,用于解析model_name,如timm和vit_base_patch_被分别赋值给model_source和model_name。

       进一步,split_model_name_tag函数被调用,将model_name拆分为基础模型名称和配置参数。例如,model_name='vit_base_patch_',tag=''。

       然后,is_model函数检查model_name是否已注册在timm的_model_entrypoints字典中。register_model实际上是一个函数修饰器,它允许用户自定义模型,并将其添加到timm的框架中,以便无缝使用timm的训练工具,如ImageNet训练。

       在is_model验证后,create_fn通过model_entrypoint(model_name)创建模型。register_model的__name__属性在此过程中起到关键作用,它将用户自定义的函数与timm的框架连接起来。

       通过以上步骤,本文旨在解构create_model的内部逻辑,帮助读者更好地掌握register_model的修饰器功能,从而在项目中更自信地运用timm库。现在,让我们跟随代码实例,深入了解这两个函数的运作细节。