1.opencv������Դ��
2.OpenCV Carotene 源码阅读(持续更新)
3.Opencv blur源码解析
4.opencv cv::distanceTransform()距离变换论文与源码
opencv������Դ��
本文提供了一套简洁明了的函数v函OpenCV安装教程,旨在帮助开发者实现一次成功安装。库源首先,数库说明选择官方Raspbian-buster-full系统作为操作平台,函数v函并建议更换源至清华源,库源以确保下载过程顺利,数库说明微信网页怎么看源码避免遇到如GTK2.0下载失败等问题。函数v函对于远程操作需求,库源外接屏幕或使用VNC远程连接是数库说明可行方案,同时通过tee命令记录编译过程,函数v函以便在远程连接中断时仍能查看详细信息。库源
安装系统镜像,数库说明完成OpenCV安装后,函数v函生成的库源镜像文件大小仅4.G,压缩后为2.G,数库说明直接烧录至TF卡即可使用。该系统已预装VNC等必备软件,配置了静态IP,提供详尽的使用指南,包括树莓派和Windows系统间的coc脚步源码文件复制和传输方法。系统兼容树莓派4和3型号,对于有补充需求之处,将在文章末尾进行说明。
正式安装OpenCV,首先确保安装所需的依赖工具和图像、视频库。按照步骤逐一进行,包括安装构建必需工具、图像工具包、视频工具包、GTK2.0以及优化函数包。在编译OpenCV源码前,下载并解压OpenCV3.4.3及opencv_contrib3.4.3(选择版本时需确保二者版本号一致)。
采用直接下载或wget下载两种方法获取源码,解压后进入源码目录。创建release文件夹,用于存放cmake编译时产生的临时文件。设置cmake编译参数,安装目录默认为/usr/local,录播课程源码确保参数正确配置,尤其是对于root用户下的cmake命令,需修改OPENCV_EXTRA_MODULES_PATH的值为绝对路径。
编译过程中,确认进度到达%,以验证安装成功。进行其他配置,包括设置库路径,以便于使用OpenCV库,也可选择不进行设置。配置opencv.conf和bash.bashrc文件,进行必要的参数添加,重启树莓派或重新登录用户后,测试OpenCV使用是否正常。
演示Python程序使用OpenCV画一条直线,确保Python编译器已安装,执行相关代码。系统镜像中额外提供远程连接和文件传输功能的说明,包括使用VNC或Putty等工具远程控制树莓派的测算网源码方法,以及如何在树莓派与Windows系统间进行复制粘贴,通过autocutsel软件简化操作流程。
OpenCV Carotene 源码阅读(持续更新)
OpenCV的Carotene库是NVIDIA为优化计算机视觉(CV)操作而精心设计的,特别针对ARM Neon架构,旨在加速诸如resize和Canny等关键算法。这款库以其清晰的代码和对SIMD编程初学者的友好性而备受赞誉。本文将深入探索Carotene的魅力,揭示其独特的功能点,如accumulate函数的多变接口,包括square accumulate和addweight,后者展示了创新的处理策略。
Carotene的Blur(k3x3_u8)处理方法与众不同,采用了seperateFilter算法,而非传统的O(1)复杂度,展示了其在效率优化上的独到之处。值得一提的是,行方向移位求和和normalize系数的量化计算,都被Carotene以精细的技巧逐一解析。要了解更多细节,smb源码安装不妨直接查看其源码,那里充满了值得学习的见解和实践经验。
Carotene在指令处理上展现出了高效能,如一次性执行乘系数、类型转换和右移等操作,通过vqrdmulhq_s等矢量化指令,实现了寄存器数据的复用。对于边界处理,left_border通过set_lane技术轻松搞定,而right_border的成本则更低。库中还包括了integral和sqrtIntegral的实现,行方向积分的向量化通过移位操作得以高效完成,即使在arm Neon缺乏element shift指令的情况下,Carotene也能通过uint_t标量移位巧妙解决。
在模糊处理上,GaussianBlur遵循Blur的优化思路,对gauss_kernel进行了量化。另外,还有诸如absdiff、add_weighted、add、bitwise以及channel_extract/combine等N-1种基础算子,它们巧妙地结合了neon指令和宏定义,为性能提升做出了贡献。这些细节的精心设计,充分体现了Carotene在提升OpenCV性能上的匠心独运。
总的来说,Carotene的源码是学习SIMD编程和OpenCV优化的绝佳资源,无论是对于开发者还是对性能追求者来说,都是一份值得深入探索的宝藏。如果你对这些技术感兴趣,不要犹豫,立即投身于源码的世界,你会发现其中隐藏的无数精彩。
Opencv blur源码解析
本文详述了在Opencv非GPU环境下,blur函数的完整执行流程以及优化策略。首先,我们可在4.5.5版本的modules/imgproc/src/box_filter.dispatch.cpp文件中找到blur的定义。默认情况下,CV_INSTRUMENT_REGION()宏被关闭,但可以通过修改CMake设置启用,用于性能检测。
代码中,boxFilter调用的是归一化的归一化处理,通过CV_OCL_RUN判断是否能使用OpenCL。对src_矩阵的操作表明,函数直接处理原始数据。参数ddepth的处理确保其类型合理,通过creat函数的复用策略减少内存分配。在处理边界条件时,BORDER_ISOLATED位运算在代码中起到重要作用。
对于自定义硬件支持的部分,本文主要关注非特定硬件的实现,如CALL_HAL和CV_OVX_RUN。createBoxFilter函数返回一个通用过滤器,根据输入参数,boxFilter是可分离滤波的,对行和列分别处理以优化计算。理解不同过滤器类型,如filter2D、rowFilter和columnFilter,有助于深入理解整个过程。
BoxFilter的算法思想可参考相关优化笔记。sumType参数的使用是关键,它决定了中间存储结果的类型。函数执行过程中,CV_INSTRUMENT_REGION()追踪时间,CV_CPU_DISPATCH则用于指令集加速。FilterEngine__apply函数中,RowSum和ColumnSum类负责行和列的滤波操作,不同kernel_size和channels的处理策略各有侧重。
总的来说,blur的执行涉及多个步骤,包括性能监测、数据处理、边界条件判断和优化的滤波操作。了解这些细节有助于深入理解Opencv的优化技术。对于Opencv在不同硬件层面的加速,后续如有更新,将分享更多内容。
opencv cv::distanceTransform()距离变换论文与源码
OpenCV的cv::distanceTransform()函数用于计算图像中所有点到最近‘0’点的距离,其应用广泛,例如在无人驾驶中,用于测量图像中最近障碍物的距离。它支持两种距离计算:L1和L2。当maskSize为DIST_MASK_PRECISE且distanceType为DIST_L2时,采用[]中的并行算法,借助TBB库。其他情况下,会使用[]算法。
简单来说,[]算法在年发表,而[]则更易于理解且适用于L2距离。距离变换定义了一个函数Df,它是输入函数f的欧氏距离变换,即对于每个点p,找到最近的q点,其距离加上f(q)值。
公式[公式]描述了经典的距离变换方法,它将每个网格位置与最近点P通过二值图像关联。在OpenCV的实现中,如/modules/imgproc/src/distransform.cpp的Line ,有一维和二维情况的处理方法。一维时,欧氏距离平方变换为[公式],二维则通过两次一维变换简化计算过程。
如果你对OpenCV的距离变换感兴趣,欢迎查看我的专栏并投稿,共同探讨OpenCV背后的原理和知识,共同进步。